

WAVECREST Corporation

Application Programming Interface (API)

User’s Guide

200002-03 REV A

WAVECREST Corporation continually engages in research related to
product improvement. New material, production methods, and design
refinements are introduced into existing products without notice as a
routine expression of that philosophy. For this reason, any current
WAVECREST product may differ in some respect from its published
description but will always equal or exceed the original design
specifications unless otherwise stated.

Copyright 2001

WAVECREST Corporation
A Technologies Company

7626 Golden Triangle Drive
Eden Prairie, MN 55344

(952) 831-0030
(800) 733-7128

www.wavecrest.com

All Rights Reserved

First Printing: September 1999

Microsoft and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation.

This page intentionally left blank.

Table of Contents

iii

Table of Contents ...iii
Chapter 1 - INTRODUCTION

1.1 Elements of an Application Utilizing the
WAVCREST Production API...................................1-1

1.2 Files comprising the Wavecrest production API1-2

1.3 WAVCREST Production API Installation................1-3

1.4 Building the Sample Application..............................1-3

1.5 Executing the Sample Application............................1-3

1.6 Reviewing the Sample Application...........................1-4

1.7 Where to Go From Here..1-6

Chapter 2 - HIGH LEVEL FUNCTIONS

2.1 Standard Window Routines2-1

2.1.1 Fill a Window Structure with Default
Parameters ...2-2

2.1.2 Perform a Data Acquisition...........................2-3

2.1.3 Clear a Window Structure Prior to Release ..2-4

2.1.4 Load Settings from Visi6 Configuration
File ..2-4

2.2 High Level Utility Routines......................................2-5

2.2.1 Get API Version..2-5

2.2.2 Fill a Parameter Structure with Default
Values..2-5

2.2.3 Perform a Pulse-find Operation2-6

2.2.4 Determine X-value in Plot Structure Based
on Index...2-7

2.2.5 Determine Y-value in Plot Structure Based
on Index...2-7

2.2.6 Determine Tail-fit Y-value for a given
X-value..2-8

2.2.7 Free all internal memory2-8

Chapter 3 - STRUCTURES

3.1 Standard Window Structures3-1

3.1.1 Structure used for Oscilloscope Window......3-1
3.1.2 Structure used for Histogram Window3-2

3.1.3 Structure used for Jitter Analysis Window ...3-4

Table of Contents

iv

3.1.4 Structure used for Function Analysis
Window...3-6

3.1.5 Structure used for Time Digitizer Window...3-8

3.1.6 Structure used for dataCOM Window3-9

3.1.7 Structure used for Eye Histogram Window 3-15

3.1.8 Structure used for Time Series Window.....3-17

3.1.9 Structure used for Statistics Window..........3-18

3.1.10 Structure used for Random Data Window ..3-19

3.2 Utility Structures ...3-20

3.2.1 Basic structure used to return plot data.......3-20

3.2.2 Structure used for parameters of one side of
a tail-fit ..3-21

3.2.3 Structure used to hold tail-fit parameters for
histograms ...3-21

3.2.4 Structure used for Acquisition Parameters..3-22

3.2.5 Structure with FFT window and analysis
parameters ...3-25

3.2.6 Structure used for Jitter Generator
Parameters ...3-26

3.2.7 Structure used for Arm Generator
Parameters ...3-29

Chapter 4 - LOW LEVEL FUNCTIONS

4.1 Initialization and Termination Functions..................4-1

4.1.1 Initialize Device ..4-1

4.1.2 Cleanup Prior to Application Termination....4-2

4.2 Information Functions...4-3

4.2.1 Get API Version..4-3

4.2.2 Get Maximum Channel Number...................4-3

4.2.3 Get Maximum Start/Stop Count Values4-4

4.2.4 Get Maximum Sample Values4-4

4.3 Utility Functions ...4-5

4.3.1 Enable or Disable Front Panel Display4-5

4.3.2 Download Acquisition Parameters to Device4-5

4.3.3 Perform a Pulse-find Operation4-6

4.3.4 Update Voltage Information4-6

4.3.5 Device Reset ...4-7

Table of Contents

v

4.4 Communication Functions ..4-8

4.4.1 Send Command String to Device..................4-8

4.4.2 Send Command String and Receive ASCII
Response ...4-8

4.4.3 Send Command String and Receive Double
Precision Floating Point Number..................4-9

4.4.4 Send Command String and Receive Long
Integer as Response.......................................4-9

4.5 Acquisition Functions ...4-10

4.5.1 Request Data Acquisition............................4-10

4.5.2 Request Data Acquisition with Raw Data
Returned ..4-11

4.5.3 Perform Analysis Macro4-12

4.5.4 Request Time Stamp Data...........................4-14

4.5.5 Request Strobing Oscilloscope Data...........4-15

4.6 Calibration Functions..4-16

4.6.1 Request External Calibration4-16

4.6.2 Request Internal Calibration4-17

4.6.3 Request Strobe Calibration4-18

4.7 Generic GPIB Communication Functions4-19

4.7.1 Open a Generic GPIB Device4-19

4.7.2 Read Data from a Generic GPIB Device4-20

4.7.3 Send Data to a Generic GPIB Device4-21

4.7.4 Cleanup Prior to Application Termination..4-21

4.8 DTS550 Jitter Generator Functions4-22

4.8.1 Initialize Jitter Generator Device4-22

4.8.2 Cleanup Prior to Application Termination..4-23

4.8.3 Enable or Disable Front Panel Display4-23

4.8.4 Retrieve Setup Parameters from Jitter
Generator...4-23

4.8.5 Download Setup Parameters to Jitter
Generator ..4-24

4.8.6 Fill a Jitter Generator Structure with Default
Values..4-24

4.8.7 Jitter Generator Reset..................................4-25

4.8.8 Send Command String to Device................4-25

Table of Contents

vi

4.8.9 Send Command String and Receive ASCII
Response ...4-25

4.8.10 Send Command String and Receive Double
Precision Floating Point Number................4-26

4.8.11 Send Command String and Receive Long
Integer as Response.....................................4-26

4.9 AG-100 Arm Generator Functions4-27

4.9.1 Initialize Arm Generator Device.................4-27

4.9.2 Cleanup Prior to Application Termination..4-28

4.9.3 Download Setup Parameters to Arm
Generator ..4-28

4.9.4 Fill an Arm Generator Structure with
Default Values...4-29

4.9.5 Arm Generator Reset4-29

4.9.6 Send Command String to Device................4-30

4.9.7 Send Command String and Receive ASCII
Response ...4-30

4.9.8 Find Arm Delay for Optimal Marker
Placement ..4-31

Chapter 5 - CODE SAMPLES

5.1 Modifying Window Structure Parameters5-1

5.2 Performing Tail-fit ..5-1

5.3 Drawing from a Plot Structure5-2

5.4 Performing a dataCOM Measurement5-3

Chapter 6 - BUILD CONSIDERATIONS

6.1 Supported Compilers for the Wavecrest
Production API..6-1

6.2 Build Requirements...6-1

6.2.1 Win32 (Win95, Win98, and WinNT 4.0)6-1

6.2.2 All UNIX Platforms6-2

6.2.3 HP-UX 9.05 and HP-UX 10.206-2

6.2.4 Sun 4.1.x (Solaris 1)......................................6-3

6.2.5 Sun 2.5.1 or above (Solaris 2).......................6-3

Appendix A - Error Codes

Appendix B - VBasic Example

1-1

CHAPTER 1 - INTRODUCTION

Wavecrest has implemented the Production API to provide direct access to
the algorithms employed in the Visi6 software. It allows programmers to
quickly integrate the functionality available in the Visi6 software into their
own applications. Many tedious tasks such as GPIB interfacing and
memory management are eliminated. A layered approach is utilized
which provides access to all the statistics and plot data available in the
Visi6 software, and versions are available for Microsoft Windows as well
as many UNIX platforms. It also provides routines to leverage
configurations established with the Visi6 software in order to streamline
the transition from characterization laboratory to production floor.

1.1 ELEMENTS OF AN APPLICATION UTILIZING THE
WAVECREST PRODUCTION API APPLICATION

An application utilizing the Wavecrest Production API is typically
comprised of the following components:

Note that the Wavecrest Production API is divided into two blocks. The
DtsAPI block provides a Hardware Abstraction Layer to isolate the higher
level algorithms from the hardware itself. Although GPIB is the only
physical medium supported at this time, this abstraction layer provides a
means to easily migrate to other mediums such as Ethernet in the future.

W
av

ec
re

st
Pr

od
uc

tio
n

A
PI

WavAPI

DtsAPI

GPIB Driver

User Application

1-2

The WavAPI block contains all the code required for the various Visi6
algorithms. It depends on the DtsAPI block for all lower level interactions
with the hardware.

1.2 FILES COMPRISING THE WAVECREST
PRODUCTION API

The Wavecrest Production API is comprised of a pair of header files and
accompanying libraries. The header files are platform independent while
the libraries are platform dependent. Libraries for Microsoft Windows
applications are provided in the form of run-time Dynamic Link Libraries.
Libraries for UNIX applications are provided in both static and shared
forms on HP platforms and as static libraries only on SUN.

In addition to the header and library files, sample application source code
and makefiles are also provided. There is also a directory containing
various dataCOM patterns. Files are located on the CDROM in the
following directory locations:

�─api
│ api.pdf // This manual in PDF form
│ apitest.c // Sample application source code
│ dtsapi.h // Low level header file
│ wavapi.h // High level header file
�─hp10x
│ libdts.a // Low level static library
│ libdts.sl // Low level shared library
│ libwav.a // High level static library
│ libwav.sl // High level shared library
│ makefile // Makefile to build sample
�─hp9x
│ libdts.a // Low level static library
│ libdts.sl // Low level shared library
│ libwav.a // High level static library
│ libwav.sl // High level shared library
│ makefile // Makefile to build sample
�─solaris2
│ libdts.a // Low level static library
│ libwav.a // High level static library
│ makefile // Makefile to build sample
�─sunos
│ libdts.a // Low level static library
│ libwav.a // High level static library
│ makefile // Makefile to build sample
�─win32
│ dtsapi.bas // VBasic equivalent to include
│ dtsapi.dll // Low level shared library
│ dtsapi.lib // Stub header for linking
│ makefile // Makefile to build sample
│ wavapi.bas // VBasic equivalent to include
│ wavapi.dll // High level shared library
│ wavapi.lib // Stub header for linking
�─patns // Various dataCOM pattern files

1-3

1.3 WAVECREST PRODUCTION API INSTALLATION

To install the Wavecrest Production API, first create a target directory on
the host system. Copy the files contained in the base directory (apitest.c
dtsapi.h wavapi.h) as well as those from the particular platform directory
to the newly created target directory.

1.4 BUILDING THE SAMPLE APPLICATION

Before attempting to build the sample application, the supported compiler
should be installed and properly configured. This may include modifying
the PATH environment variable so that the compiler executable can be
launched from a command line. It may also involve setting INCLUDE
and LIB environment variables so that the standard include files and
libraries may be located by the compiler. Consult the compiler
documentation for further information.

To build the sample application, on UNIX execute the following from a
command prompt:

make

To build the sample application, on Microsoft Windows execute the
following from a command prompt:

nmake

1.5 EXECUTING THE SAMPLE APPLICATION

Before attempting to execute the sample application, the supported GPIB
interface card must be installed and properly configured. Consult the
manufacturer’s documentation for further information. The Wavecrest
DTS207x should be powered, attached via GPIB cable, and the output
from one of the Cal Signals should be connected to the Ch1 input. Test
your configuration using Visi6 if possible.

To execute the sample application, issue the following from a command
prompt:

./apitest

Note: proceeding the application name by “./” assures that the executable
is launched even if the current directory is not included in the search path
on UNIX.

1-4

If the sample application is successfully executed, the program should
produce output similar to the following:

-Wavecrest Production API-
- Sample Application -

Average: 5.002ns
1-Sigma: 2.612ps
Minimum: 4.992ns
Maximum: 5.009ns

Congratulations! You have built your first application using the Wavecrest
Production API.

1.6 REVIEWING THE SAMPLE APPLICATION

Let’s examine the sample application in more detail.

❶
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "wavapi.h"

long main (void)
{

❷
STAT tStat;

❸
if (DtsInitDev ("dev5", 0, 5))

goto error;

❹
memset (&tStat, 0, sizeof (STAT));
WavDefStat (&tStat);

❺
if (WavGetStat (&tStat))

goto error;

❻
printf ("-Wavecrest Production API-\n");
printf ("- Sample Application -\n\n");
printf (" Average: %.3lfns\n", tStat.dMean * 1e9);
printf (" 1-Sigma: %.3lfps\n", tStat.dSdev * 1e12);
printf (" Minimum: %.3lfns\n", tStat.dMini * 1e9);
printf (" Maximum: %.3lfns\n", tStat.dMaxi * 1e9);

❼
WavClrStat (&tStat);
DtsExitDev ();
return 0;

error:
DtsExitDev ();
printf ("DTS207x error\n");
return -1;
}

1-5

Step 1: Declare Required Include Files

The Wavecrest Production API utilizes a number of custom structures
which are declared in the two supplied include files. When wavapi.h is
included, dtsapi.h is also automatically included.

Step 2: Allocate Required Structures

Each Visi6 window has a specific structure and several function calls to
facilitate the data acquisition process. These structures contain input
information concerning how to acquire the data, and output data as a result
of the acquisition. The STAT structure is specific to the Statistics
window.

Step 3: Initialize the DTS207x

DtsInitDev() must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The
initialization values shown may need to be altered if a non-standard
configuration is used. The first parameter is used to specify the GPIB
device name on UNIX platforms and is ignored on Microsoft Windows.
The second parameter is the board number, and the final parameter is the
device number. See the documentation concerning this function call for
complete details concerning configuration options.

All Production API functions return a non-zero value in the event of an
error. These error codes are defined in the supplied include files. A
successful call to DtsInitDev() must be accomplished before any other
calls to the Wavecrest Production API.

Step 4: Initialize STAT Window Structure

Before utilizing an allocated Window Structure it must be initialized. This
initialization may involve two or more steps.

The first step is to zero out the array using the standard memset() function.
This step should only be performed once immediately after the structure is
allocated and prior to it being used, as information concerning dynamic
memory allocation is subsequently added to the structure.

The second step is to call the function call intended to initialize each of the
particular structure parameters to their default values. In this case the
WavDefStat() function is called. This step insures that all parameters
contain reasonable values.

The final step is to manually modify any parameters from their default
values. Great care should be used when manually adjusting parameters to
insure that valid values are used.

1-6

Step 5: Perform Data Acquisition

A single call is made to perform the acquisition. Information concerning
how to acquire the data is drawn from the STAT structure, and output data
as a result of the acquisition is also returned in the STAT structure. If an
error occurs during the acquisition a non-zero value is returned. See
Appendix A for definition of error codes.

Note that the Wavecrest Production API performs it’s own dynamic
memory allocation as required. The calling application does not need to
concern itself with memory management. However, since dynamic
memory allocation information is contained within the structure, the
supplied cleanup functions detailed below must be utilized in order to
avoid memory leaks.

Acquisition functions may be called repeatedly with the same Window
Structure. When doing so the output results contained within the structure
are simply overwritten. Any dynamic memory previously allocated is re-
utilized. Using the same Window Structure over and over again has the
desirable attribute of reducing the memory fragmentation that would occur
if memory was allocated, freed, and reallocated repeatedly.

Step 6: Print Results

Results to be printed are drawn directly from the STAT structure. Note
that all results are returned in the units of Hertz, Volts, and seconds.
Therefore a conversion factor may be required in order to display the
results in more appropriate units.

Step 7: Cleanup and Terminate Application

Before terminating the application, the supplied cleanup functions should
be called. WavClrStat() frees any dynamic memory which may have been
allocated, and clears out the structure. DtsExitDev() closes the GPIB
device driver. After this cleanup has been performed the application may
terminate normally.

1.7 WHERE TO GO FROM HERE

This completes your introduction to the Wavecrest Production API. You
should have installed the software, built a basic application, and reviewed
it’s composition. You should now have a basic understanding of the
underlying framework, and be ready to leverage that understanding to
further explore the interface. Subsequent chapters present additional detail
concerning the structures and functions provided with the Wavecrest
Production API.

2-1

CHAPTER 2 - HIGH LEVEL FUNCTIONS

The Wavecrest Production API provides four high level functions to
implement each of the nine standard windows contained in the Visi6
software. Additional utility routines are provided to initialize parameters,
perform a pulse-find operation, and interpret plot arrays. These routines
relieve the programmer of many tedious tasks such as GPIB interfacing
and memory management.

This chapter provides a general overview of these high level functions. To
understand the particular input and output parameters involved in the
context of a specific window, refer to the corresponding structures
addressed in the following chapter.

2.1 STANDARD WINDOW ROUTINES

The four high level functions used to implement each of the nine standard
windows contained in the Visi6 software are declared as follows:

void WavDefXxxx (YYYY *tZzzz);
long WavGetXxxx (YYYY *tZzzz);
void WavClrXxxx (YYYY *tZzzz);
long WavCfgXxxx (YYYY *tZzzz, char *sFile);

Where the following substitutions are made:

Window Xxxx YYYY tZzzz

Oscilloscope Osci OSCI tOsci
Histogram Hist HIST tHist
Jitter Analysis Jitt JITT tJitt
Function Analysis Func FUNC tFunc
Time Digitizer Tdig TDIG tTdig
dataCOM Dcom DCOM tDcom
Eye Histogram Eyeh EYEH tEyeh
Time Series Tser TSER tTser
Statistics Stat STAT tStat
Random Data Rand RAND tRand

Note: _stdcall and DllCall are part of the function definitions in the header
file, but can essentially be ignored. They are utilized to provide options
when building and using DLL’s on Microsoft Windows. They are
implemented to allow the same header file to be used for both building the
DLL and importing the DLL, insuring consistent declarations.

2-2

2.1.1 Fill a Window Structure with Default Parameters

void WavDefXxxx (YYYY *tZzzz);

Input:
tZzzz Pointer to Window Structure

Return:
None

Example:
STAT tStat;
memset (&tStat, 0, sizeof (STAT));
WavDefStat (&tStat);

This function is used to fill a Window Structure with default values.
Using this function insures that all parameters contain reasonable values.
It is recommended that this function is called first even if parameters
within the structure will be subsequently adjusted manually.

During data acquisition dynamic memory will be acquired as necessary.
This memory is tracked within the window structure. Before calling this
function with a newly allocated Window Structure you should zero out the
array using the standard memset() function. This step insures that
information within the structure concerning dynamic memory allocation is
cleaned out prior to using the structure. This step should be performed
once and only once on a given structure.

In spite of owning memory, this function may be called repeatedly for a
given window structure to reestablish default parameters, as it does not
effect any of the parameters pertaining to memory allocation. Use the
cleanup function detailed later in the chapter to clear out a structure after it
has been used. Failure to use the cleanup function before discarding a
window structure will result in a memory leak.

2-3

2.1.2 Perform a Data Acquisition

long WavGetXxxx (YYYY *tZzzz);

Input:
tZzzz Pointer to Window Structure

Return:
0 on Success or Error Code on Failure

Example:
if (WavGetStat (&tStat))

goto ErrorHandler;

This function call is used to perform a data acquisition. Information
concerning how to acquire the data is drawn from the Window Structure,
and output data as a result of the acquisition is also returned in the
Window Structure.

Note that the Wavecrest Production API performs it’s own dynamic
memory allocation as required. The calling application does not need to
concern itself with memory management. However, since dynamic
memory allocation information is contained within the structure, the
supplied cleanup functions detailed below must be utilized in order to
avoid memory leaks.

Acquisition functions may be called repeatedly with the same Window
Structure. When doing so the output results contained within the structure
are simply overwritten. Any dynamic memory previously allocated is re-
utilized. Using the same Window Structure over and over again has the
desirable attribute of reducing the memory fragmentation that would occur
if memory was allocated, freed, and reallocated repeatedly.

2-4

2.1.3 Clear a Window Structure Prior to Release

void WavClrXxxx (YYYY *tZzzz);

Input:
tZzzz Pointer to Window Structure

Return:
None

Example:
if (WavClrStat (&tStat))

goto ErrorHandler;

Before a Window Structure is released this function should be called.
This function frees any dynamic memory that may have been allocated
during a previous data acquisition, and then clears out the structure.

2.1.4 Load Settings from Visi6 Configuration File

long WavCfgXxxx (YYYY *tZzzz, char *sFile);

Input:
tZzzz Pointer to Window Structure
sFile Pointer to File Name

Return:
0 on Success or Error Code on Failure

Example:
STAT tStat;
memset (&tStat, 0, sizeof (STAT));
WavCfgStat (&tStat, “myconfig.stc”);

This function is used to load a Window Structure with values from a Visi6
configuration file. The ability to do so streamlines the transition from
characterization laboratory to production floor. The requirements to zero
the Window Structure prior to calling the function are the same as the
function to load Default Parameters outlined above.

2-5

2.2 HIGH LEVEL UTILITY ROUTINES

These high level utility routines are provided to initialize parameters,
perform a pulse-find operation, and interpret plot arrays.

2.2.1 Get API Version

long WavGetVers (void);

Input:
None

Return:
Major version in high byte, minor version in low byte

Example:
VerNum = WavGetVers ();

This function may be called to determine the current API version.

2.2.2 Fill a Parameter Structure with Default Values

void WavDefParm (PARM *tParm);

Input:
tParm Pointer to Parameter Structure

Return:
None

Example:
PARM tParm;
WavDefParm (&tParm);

This function is used to fill a Parameter Structure with default values.
These parameters could then be downloaded to the DTS207x by calling
the DtsSetParm() function. Using this function insures that all parameters
contain reasonable values.

This function is used internally by the API itself, but may be called by a
user application as well. It would typically be used if an application were
calling some of the lower level functions such as DtsRqstAcq(),
DtsGetData(), or DtsGetMacr() to implement a user defined algorithm.

It is not necessary to clear a Parameter Structure using the standard
memset() function prior to calling this function, as no dynamic memory
allocation information is contained within the Parameter Structure.

2-6

2.2.3 Perform a Pulse-find Operation

long WavPulsFnd (PARM *tParm, long lWind);

Input:
tParm Pointer to Parameter Structure
lWind Window Type, out of the following defined types:

WIND_OSCI WIND_HIST WIND_JITT
WIND_FUNC WIND_TDIG WIND_DCOM
WIND_EYEH WIND_TSER WIND_STAT
WIND_RAND

Return:
0 on Success or Error Code on Failure

Example:
STAT tStat;
memset (&tStat, 0, sizeof (STAT));
WavDefStat (&tStat);
if (WavPulsFnd (&tStat.tParm, WIND_STAT))

goto ErrorHandler;

This function is used to perform a pulse-find operation in conjunction with
the high level window functions. The pulse-find feature determines
minimum and maximum voltage levels for the selected channels and/or
arms and sets the voltage thresholds based on the percentage set in the
lFndPcnt field in the tParm structure. Although a lower level function
DtsPulsFnd() exists, it should not be used in conjunction with the high
level window functions.

2-7

2.2.4 Determine X-value in Plot Structure Based on Index

double WavGetXval (PLOT *tPlot, long lIndx);

Input:
tPlot Pointer to Plot Structure
lIndex Index from which to determine X-value,

range (0 to tPlot.lNumb-1)
Return:

X-value
Example:

JITT tJitt;
double XvalOfYmax;
memset (&tJitt, 0, sizeof (JITT));
WavDefJitt (&tJitt);
if (WavGetJitt (&tJitt))

goto ErrorHandler;
XvalOfYmax = WavGetXval (&tJitt.tFftN,

 tJitt.tFftN.dYmaxIndx);

This function is used to assist a user application in extracting information
from a Plot Structure. In order to reduce memory requirements, only
Yaxis values are contained within Plot Structures. The Xaxis values can
be calculated using this function.

The example above details how the maximum jitter frequency can be
determined from an N-clock Jitter Analysis.

2.2.5 Determine Y-value in Plot Structure Based on Index

double WavGetYval (PLOT *tPlot, long lIndx);

Input:
tPlot Pointer to Plot Structure
lIndx Index from which to determine Y-value,

range (0 to tPlot.lNumb-1)
Return:

Y-value
Example:

JITT tJitt;
double Yval;
if (WavGetJitt (&tJitt))

goto ErrorHandler;
Yval = WavGetYval (&tJitt.tFftN, 0);

This function is used to assist a user application in extracting information
from a Plot Structure. It is primarily included to assist when programming
in Microsoft Visual Basic. When programming in C the data array can be
accessed directly, so this function adds unnecessary overhead.

2-8

2.2.6 Determine Tail-fit Y-value for a given X-value

double WavGetTfit (SIDE *tSide, double dXval);

Input:
tSide Pointer to Tail-fit Side Structure
dXval X-value from which to determine Y-value

Return:
Y-value

Example:
HIST tHist;
double minYval, maxYval;
if (tHist.tTfit.lGood)
 {
 minYval = WavGetTfit (&tHist.tTfit.tL, tHist.tTfit.tL.dLoValu);
 maxYval = WavGetTfit (&tHist.tTfit.tL, tHist.tTfit.tL.dHiValu);
 }

In order to reduce memory requirements, only coefficients for the
idealized curve representing the fitted tails are stored when tail-fits are
performed. This function can be used to generate curves representing the
idealized curves. This function should only be applied after a tail-fit has
been successfully completed, as indicated by the “lGood” flag in the TFIT
structure.

The example above details how the two endpoints of the idealized tail-fit
curve can be determined for the left tail of a Histogram window.

2.2.7 Free all internal memory

void WavFreeMem (void);

Input:
None

Return:
None

Example:
WavFreeMem();

This function may be called in order to free any memory that was
allocated for internal use. It is not normally necessary to call this function
as all memory is freed when the application is terminated. However, if
multiple threads of execution are used it may be desirable to call this
function whenever an individual thread is terminated.

3-1

CHAPTER 3 – STRUCTURE S

The Wavecrest Production API provides structures to be used in
conjunction with the high level function calls detailed in the previous
chapter. Each of these structures is specific to one of the nine standard
windows contained in the Visi6 software. Additional utility structures are
defined which are used within these standard window functions.

3.1 STANDARD WINDOW STRUCTURES

The following high level structures are used in conjunction with the
function calls detailed in the previous chapter. Each is specific to one of
the nine standard windows contained in the Visi6 software.

3.1.1 Structure used for Oscilloscope window

typedef struct
{
/* Input parameters */
PARM tParm;
FFTS tFfts;
long lStrt, lStop, lIncr;
/* Output parameters */
long lGood;
PLOT tTime[POSS_CHNS];
PLOT tFreq[POSS_CHNS];
} OSCI;

tParm
Contains acquisition parameters, see end of chapter for details

tFfts
FFT window and analysis parameters, see end of chapter for details

lStrt
Start time in picosec's (20,000 to 100,000,000), the default is 20000

lStop
Stop time in picosec's (20,000 to 100,000,000), the default is 100000

lIncr
Time increment in picoseconds, the default is 500 and minimum is 10

lGood
Flag indicates valid output data in structure

tTime
Time domain plot of voltage data

tFreq
Frequency domain plot of voltage data

3-2

3.1.2 Structure used for Histogram window

typedef struct
{
/* Input parameters */
PARM tParm;
double dUnitInt;
long lPassCnt, lErrProb;
long lTailFit, lForcFit;
long lMinHits;
long lFndEftv;
long lMinEftv, lMaxEftv;
long lAutoFix;
/* Output parameters */
long lGood;
long lNormCnt;
double dNormMin, dNormMax;
double dNormAvg, dNormSig;
long lAcumCnt;
double dAcumMin, dAcumMax;
double dAcumAvg, dAcumSig;
PLOT tNorm;
PLOT tAcum;
PLOT tMaxi;
PLOT tBath;
PLOT tEftv;
TFIT tTfit;
} HIST;

tParm
Contains acquisition parameters, see end of chapter for details

dUnitInt
Unit Interval to assess Total Jitter, only used if tail-fit is enabled.
This value is entered in seconds, the default is 1e-9 seconds (1ns).

lPassCnt
WavGetHist() can be called repeatedly with the same HIST structure.
Data is then accumulated in the tAcum and tMaxi plot structures.
This parameter tracks acquisitions so far, and may be set to 0 to reset.
When set to 0 the tAcum and tMaxi plot structures are flushed. It will
be automatically incremented by the WavGetHist() function.

lErrProb
Error probability for Total Jitter, the valid range is -1 to -16 and the
default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lTailFit
If non-zero a tail-fit will be attempted on the tAcum data array, the
default is to not attempt a tail-fit

lForcFit
If non-zero use the force-fit method, the default is disabled

lMinHits
Minimum hits before attempting a tail-fit in 1000's, the default is 50

3-3

lFndEftv
Flag to indicate that an effective jitter calculation is to be attempted

lMinEftv, lMaxEftv
Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

lAutoFix
If true perform a pulsefind as required

lGood
Flag indicates valid output data in structure

lNormCnt
Number of hits in tNorm plot array below

dNormMin
Minimum value in tNorm plot array below

dNormMax
Maximum value in tNorm plot array below

dNormAvg
Average value in tNorm plot array below

dNormSig
1-Sigma value in tNorm plot array below

lAcumCnt
Number of hits in tAcum plot array below

dAcumMin
Minimum value in tAcum plot array below

dAcumMax
Maximum value in tAcum plot array below

dAcumAvg
Average value in tAcum plot array below

dAcumSig
1-Sigma value in tAcum plot array below

tNorm
Histogram of data from latest acquisition only

tAcum
Histogram of data from all acquisitions combined

tMaxi
Histogram with the maximum value obtained for every particular bin
across all of the acquisitions performed so far

tBath
Bathtub curves determined from PDF, only valid when a successful
tail-fit has been performed

tEftv
Effective Bathtub curves if lFndEftv is set and a valid fit is obtained

tTfit
Structure containing tail-fit info, only valid when a successful tail-fit
has been performed. See end of chapter for additional details

3-4

3.1.3 Structure used for Jitter Analysis window

typedef struct
{
/* Input parameters */
PARM tParm;
FFTS tFfts;
long lIncStop;
long lMaxStop;
long lAutoFix;
double dCornFrq;
double dRjpjFmn;
double dRjpjFmx;
long lFftAvgs;
/* Output parameters */
long lGood;
double dWndFact1Clk;
double dWndFactNClk;
PLOT tSigm;
PLOT tPeak;
PLOT tFft1;
double dPjit1Clk;
double dRjit1Clk;
long *lPeakData1Clk;
long lPeakNumb1Clk;
long lPeakRsvd1Clk;
PLOT tFftN;
double dPjit1Clk;
double dRjit1Clk;
long *lPeakData1Clk;
long lPeakNumb1Clk;
long lPeakRsvd1Clk;
double dFreq;
} JITT;

tParm
Contains acquisition parameters, see end of chapter for details

tFfts
FFT window and analysis parameters, see end of chapter for details

lIncStop
Increase stop count between acquisitions in increments of this value,
the default is 1. Stop counts range from tParm.lStopCnt to
lMaxStop

lMaxStop
Maximum stop count to collect data for, the default is 256. The stop
count will be incremented from the value in tParm.lStopCnt to this.

lAutoFix
If true calculate the above parameters based on the following corner
frequency plus information measured on the live data signal

dCornFrq
Corner Frequency for RJ+PJ in Hertz. This value is used in
conjunction with the Bit Rate and pattern to determine the maximum
stop count to be used to acquire RJ+PJ data. A lower value increase
acquisition time. The default value is 637e3.

3-5

dRjpjFmn
Minimum integration limit for RJ+PJ in Hertz, a negative value
disables filter. This filter is disabled by default.

dRjpjFmx
Maximum integration limit for RJ+PJ in Hertz, a negative value
disables filter. This filter is disabled by default.

lFftAvgs
This variable is raised to the power of 2 to determine the number of
acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

lGood
Flag indicates valid output data in structure

dWndFact1Clk, dWndFactNClk
These values are all used internally, DO NOT ALTER!

tSigm
Contains the 1-Sigma plot array

tPeak
Contains the (max - min) plot array

tFft1
Frequency plot data on 1-clock basis

dPjit1Clk
Periodic jitter calculated on 1-clk basis

dRjit1Clk
Random jitter calculated on 1-clk basis

lPeakData1Clk
Tracks detected spikes in RJ+PJ data. This structure is not normally
directly access by an application program.

lPeakNumb1Clk
Count of detected spikes, indicates the number of values in the
lPeakData1Clk array.

lPeakRsvd1Clk
Used to track memory allocation for lPeakData1Clk values

tFftN
Frequency plot data on N-clock basis

dPjitNClk
Periodic jitter calculated on N-clk basis

dRjitNClk
Random jitter calculated on N-clk basis

lPeakDataNClk
Tracks detected spikes in RJ+PJ data. This structure is not normally
directly access by an application program.

lPeakNumbNClk
Count of detected spikes, indicates the number of values in the
lPeakDataNClk array.

lPeakRsvdNClk
Used to track memory allocation for lPeakDataNClk values

dFreq
Carrier frequency

3-6

3.1.4 Structure used for Function Analysis window

typedef struct
{
/* Input parameters */
PARM tParm;
FFTS tFfts;
long lIncStrt;
long lMaxStrt;
long lAnlMode;
long lAutoFix;
long lSpanCnt;
long lDataPts;
/* Output parameters */
long lGood;
PLOT tTime;
PLOT tDerv;
PLOT tFftT;
PLOT tFftD;
PLOT tSigm;
PLOT tPeak;
PLOT tMini;
PLOT tMaxi;
double dSigmAvg;
double dSigmMin;
double dSigmMax;
double dTimePos;
double dTimeNeg;
long lTimePosLoc;
long lTimeNegLoc;
double dDervPos;
double dDervNeg;
long lDervPosLoc;
long lDervNegLoc;
double dFreq;
} FUNC;

tParm
Contains acquisition parameters, see end of chapter for details. Note
that external Arm1 is enabled by default.

tFfts
FFT window and analysis parameters, see end of chapter for details

lIncStrt
Increase start count by this value, the default is 1. Data is collected for
start counts ranging from tParm.lStrtCnt to lMaxStrt.

lMaxStrt
Maximum start count to collect data for, the default is 250. The start
count will be incremented from the value in tParm.lStrtCnt to this.

lAnlMode
Relationship of start and stop counts, use one of:

ANL_FNC_FIRST Arm start first
ANL_FNC_PLUS1 Stop = Start + 1
ANL_FNC_START Stop = Start

3-7

lAutoFix
If true calculate the above parameters based on lSpanCnt and
lDataPts plus information measured on the live data signal

lSpanCnt
The number of edges across which to measure

lDataPts
The total data points within span to measure

lGood
Flag indicates valid output data in structure

tTime
Time domain plot data

tDerv
1st derivative of time domain plot data

tFftT
Frequency domain plot data

tFftD
Frequency domain of 1st derivative plot data

tSigm
Contains the 1-Sigma plot array

tPeak
Contains the (max - min) plot array

tMini
Contains the Minimum plot array

tMaxi
Contains the Maximum plot array

dSigmAvg
Average 1-Sigma value

dSigmMin
Minimum 1-Sigma value

dSigmMax
Maximum 1-Sigma value

dTimePos
Maximum increase between time values

dTimeNeg
Maximum decrease between time values

lTimePosLoc
Index to maximum increase between values

lTimeNegLoc
Index to maximum decrease between values

dDervPos
Maximum increase between 1st derivative values

dDervNeg
Maximum decrease between 1st derivative values

lDervPosLoc
Index to maximum increase between 1st derivative values

lDervNegLoc
Index to maximum decrease between 1st derivative values

dFreq
Carrier frequency

3-8

3.1.5 Structure used for Time Digitizer window

typedef struct
{
/* Input parameters */
PARM tParm;
FFTS tFfts;
long lAutoFix;
double dMaxFreq;
long lFftAvgs;
/* Output parameters */
long lGood;
PLOT tTime;
PLOT tStmp;
PLOT tFft1;
PLOT tFftN;
double dCarFreq;
double dSmpRate;
double dFftNdBc;
} TDIG;

tParm
Contains acquisition parameters, see end of chapter for details

 lStampTm is enabled for this window by default
tFfts

FFT window and analysis parameters, see end of chapter for details
lAutoFix

If true calculate the above parameters based on dMaxFreq plus
information measured on the live data signal

dMaxFreq
Maximum Frequency information that is desired

lFftAvgs
This variable is raised to the power of 2 to determine the number of
acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

lGood
Flag indicates valid output data in structure

tTime
Time domain plot data

tStmp
Time stamp data array, not normally plotted

tFft1
Frequency plot data on 1-clock basis

tFftN
Frequency plot data on N-clock basis

dCarFreq
Carrier frequency

dSmpRate
Sampling rate

dFftNdBc
dBc assessed on 1-clock FFT data

3-9

3.1.6 Structures used for dataCOM window

typedef struct
{
/* Input parameters */
PARM tParm;
char sPtnName[128];
long lAcqMode, lRndMode;
long lQckMode, lIntMode;
long lGetRate, lTailFit;
long lErrProb, lPassCnt;
long lFftAvgs;
SPEC tRateInf, tDdjtInf, tRjpjInf;
double dDdjtLpf, dDdjtHpf;
double dRjpjFmn, dRjpjFmx;
double dBitRate, dCornFrq;
long lHeadOff;
long lFndEftv;
long lMinEftv, lMaxEftv;
long lFiltEnb;
/* Output parameters */
long lGood;
PATN tPatn;
double dWndFact;
long lMaxStop, lPosRoll, lNegRoll;
DDJT *tDdjtData;
long lDdjtRsvd;
double *dMeasData[2];
long lMeasRsvd[2];
double *dRjpjData[4];
long lRjpjRsvd[4];
double *dTfitData[4];
long lTfitRsvd[4];
long *lPeakData[4];
long lPeakNumb[4], lPeakRsvd[4];
double *dFreqData[4];
long lFreqRsvd[4];
double *dTailData[4];
long lTailRsvd[4];
long lHits;
double dDdjt, dRang;
double dRjit[4], dPjit[4], dTjit[4];
double dEftvLtDj[4], dEftvLtRj[4];
double dEftvRtDj[4], dEftvRtRj[4];
PLOT tRiseHist, tFallHist;
PLOT tRiseMeas, tFallMeas;
PLOT tNormDdjt;
PLOT tHipfDdjt, tLopfDdjt;
PLOT tBathPlot[4];
PLOT tEftvPlot[4];
PLOT tSigmNorm[4], tSigmTail[4];
PLOT tFreqNorm[4], tFreqTail[4];
} DCOM;

3-10

tParm
Contains acquisition parameters, see end of chapter for details

sPtnName
Name of pattern file to be used, the file must exist or an error will be
returned. The first time WavGetDcom() is called the pattern is loaded
into tPatn which is the internal representation of the pattern. If the
pattern file is to be changed, WavClrDcom() should be called first to
clear the internal representation so that the new pattern will be loaded.
The default file is k285.ptn

lAcqMode
Mask defining modes for RJ+PJ acquire, set bits as follows:
Bit3: PW- Bit2: PW+ Bit1: Per- Bit0: Per+
The default mode is to acquire Per+ only.

lRndMode
Non-zero value enables random mode, valid when auto-arming only.
This is not enabled by default.

lQckMode
Non-zero value enables quick mode, valid with external arm only.
When enabled a sparse set is obtained for RJ+PJ analysis, which
significantly reduces acquisition time. High frequency performance is
reduced when this option is enabled. This is not enabled by default.

lIntMode
Interpolation mode for RJ+PJ analysis, non-zero value selects linear
interpolation, otherwise cubic interpolation is used. Cubic
interpolation is the default mode.

lGetRate
If non-zero Bit Rate will be measured, otherwise appropriate value
must be supplied in dBitRate variable. The default is to measure the
Bit Rate. This mode is NOT valid when using random mode, the
value must be supplied.

lTailFit
If non-zero a tail-fit will be tried, valid with external arm only. Not
enabled by default.

lErrProb
Error probability for Total Jitter, the valid range is -1 to -16 and the
default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lPassCnt
Acquisitions so far, set to 0 to reset

lFftAvgs
This variable is raised to the power of 2 to determine the number of
acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

tRateInf
Parameters to acquire Bit Rate, see SPEC structure later in chapter

tDdjtInf
Parameters to acquire DCD+DDJ, see SPEC structure later in chapter

3-11

tRjpjInf
Parameters to acquire RJ+PJ, see SPEC structure later in chapter

dDdjtLpf
Low pass DCD+DDJ filter frequency in Hertz, negative value disables
filter. This is only valid when external arming is enabled. This filter
is disabled by default.

dDdjtHpf
High pass DCD+DDJ filter frequency in Hertz, a negative value
disables filter. This is only valid when external arming is enabled.
This filter is disabled by default.

dRjpjFmn
Minimum integration limit for RJ+PJ in Hertz, a negative value
disables filter. This filter is disabled by default.

dRjpjFmx
Maximum integration limit for RJ+PJ in Hertz, a negative value
disables filter. This filter is disabled by default.

dBitRate
Bit Rate, may be specified or measured. If lGetRate is non-zero this
value is measured and placed in this field. If lGetRate is zero an
appropriate value must be placed in the variable. This value nust be
supplied when Random mode is being used.

dCornFrq
Corner Frequency for RJ+PJ in Hertz. This value is used in
conjunction with the Bit Rate and pattern to determine the maximum
stop count to be used to acquire RJ+PJ data. A lower value increase
acquisition time. The default value is 637e3.

lHeadOff
Header offset, valid when external arming only. This offset value can
be used to skip past header information and into the repeating data
pattern stream. This can be useful when analyzing data from disk
drives when the pattern marker may be synchronized with the start of
frame data. The default value is 0.

lFndEftv
Flag to indicate that an effective jitter calculation is to be attempted

lMinEftv, lMaxEftv
Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

lFiltEnb
Flag to enable IDLE character insertion filter. When enabled any edge
measurements that are not within +/-0.5 UI will be discarded.

lGood
Flag indicates valid output data in structure

tPatn
Internal representation of pattern, the internal details of this structure
are not important from an application standpoint. The first time
WavGetDcom() is called the pattern is loaded into tPatn which is used
internally for all subsequent acquisition and analysis.

3-12

dWndFact, lMaxStop, lPosRoll, lNegRoll
These values are all used internally, DO NOT ALTER!

tDdjtData
Raw DCD+DDJ measurements, see DDJT structure later in chapter for
additional details, this structure is not normally directly access by an
application program.

lDdjtRsvd
Used to track memory allocation for tDdjtData structures

dMeasData
Raw all-measurements histogram data, only valid when auto-arming is
used. This structure is not normally directly access by an application
program.

lMeasRsvd
Used to track memory allocation for dMeasData values

dRjpjData
Raw variance data, this structure is not normally directly access by an
application program.

lRjpjRsvd
Used to track memory allocation for dRjpjData values

dTfitData
Raw tail-fit data if tail-fit data is enabled and successful, as indicated
by the lGood variable in the tTfit structure being non-zero. This
structure is not normally directly access by an application program.

lTfitRsvd
Used to track memory allocation for dTfitData values

lPeakData
Tracks detected spikes in RJ+PJ data. This structure is not normally
directly access by an application program.

lPeakNumb
Count of detected spikes, indicates the number of values in the
lPeakData array.

lPeakRsvd
Used to track memory allocation for lPeakData values

dFreqData
Raw FFT output when averaging is enabled. This structure is not
normally directly access by an application program.

lFreqRsvd
Used to track memory allocation for dFreqData values

dTailData
Raw tail-fit FFT output when tail-fit and averaging are both enabled.
This structure is not normally directly access by an application
program.

lTailRsvd
Used to track memory allocation for dTailData values

dHits
Total samples taken to calculate DDJT, RJ, and PJ values combined.
Gives an indication of the actual data to support the calculated total
jitter number.

3-13

dDdjt
DCD+DDJ jitter number in seconds.

dRang
Pk-Pk of all-measurements histogram, valid when auto-arming only.

dRjit
Random jitter number in seconds, for each of the enabled modes.

dPjit
Periodic jitter number in seconds, for each of the enabled modes.

dTjit
Total jitter number in seconds, for each of the enabled modes.

dEftvLtDj, dEftvLtRj, dEftvRtDj, dEftvRtRj
Effective jitter in seconds for each of the enabled modes is stored in
this variables if calculated. In order to calculate the effective jitter
lFndEftv must contain a non-zero value. Since the effective jitter is
calculated by optimizing a curve-fit a result is not guaranteed. If the
curve-fit fails a negative value will be returned in these variables.

tRiseHist
DCD+DDJ histogram of rising edges

tFallHist
DCD+DDJ histogram of falling edges

tRiseMeas
Rising all-measurements histogram, valid when auto-arming only.

tFallMeas
Falling all-measurements histogram, valid when auto-arming only.

tNormDdjt
DCD+DDJvsUI plot, valid when external arming is enabled only.

tHipfDdjt
High Pass Filtered DCD+DDJvsUI plot, valid when external arming is
enabled only. This is only calculated when dDdjtHpf is a non-
negative number. When calculated, the dDdjt value is adjusted based
on this filter being applied.

tLopfDdjt
Low Pass filtered DCD+DDJvsUI plot, valid when external arming is
enabled only. This is only calculated when dDdjtHpf is a non-
negative number.

tBathPlot
Bathtub plots, one for each of the modes enabled in lAcqMode

tEftvPlot
Effective Bathtub curves if lFndEftv is set and a valid fit is obtained

tSigmNorm
1-Sigma plots, one for each of the modes enabled in lAcqMode

tSigmTail
1-Sigma tail-fits, only valid if tail-fit is enabled. One for each of the
modes enabled in lAcqMode

tFreqNorm
Frequency plots, one for each of the modes enabled in lAcqMode

tFreqTail
Tail-fit FFT plots, only valid if tail-fit is enabled. One for each of the
modes enabled in lAcqMode

3-14

typedef struct
{
long lSampCnt;
double dMaxSerr;
long lPtnReps;
} SPEC;

lSampCnt
Sample size to use when acquiring data, the default value is 100

dMaxSerr
Value of standard error which is tolerated, used to identify wrong
pattern or other setup error. The default value is 0.5

lPtnReps
Patterns to sample across, the default values are 10 for tRateInf and 1
for tDdjtInf and tRjpjInf

typedef struct
{
double dMean;
double dVars;
double dMini;
double dMaxi;
double dDdjt;
double dFilt;
long lNumb;
} DDJT;

dMean
Average value for this span

dVars
Variance value for this span

dMini
Minimum value for this span

dMaxi
Maximum value for this span

dDdjt
Static displacement for this span (UI)

dFilt
DDJT after HPF is applied (UI)

lNumb
Number of measures in this span

3-15

3.1.7 Structure used for Eye Histogram window

typedef struct
{
/* Input parameters */
PARM tParm;
long lPassCnt, lRefEdge;
long lErrProb;
long lClokSmp, lFiltSmp;
long lTailFit, lForcFit;
long lMinHits;
long lFndEftv;
long lMinEftv, lMaxEftv;
double dMinSpan;
/* Output parameters */
long lGood;
long lRiseCnt, lFallCnt;
double dDataMin, dDataMax;
double dDataSig, dAvgSkew;
double dUnitInt;
long lUnitOff;
double dRiseMin, dRiseMax;
double dFallMin, dFallMax;
long lSpanCnt;
PLOT tRise, tFall;
PLOT tRiseProb, tFallProb;
PLOT tBath;
TFIT tTfit;
} EYEH;

tParm
Contains acquisition parameters, see end of chapter for details

lPassCnt
WavGetEyeh() can be called repeatedly with the same EYEH
structure. Data is then accumulated in the plot structures. This
parameter tracks acquisitions so far, and may be set to 0 to reset.
When set to 0 the plot structures are flushed. It will be automatically
incremented by the WavGetEyeh() function.

lRefEdge
Clock edge which all data is in reference to, valid values are:

EDGE_FALL or EDGE_RISE
The default value is EDGE_RISE

lErrProb
Error probability for Total Jitter, the valid range is -1 to -16 and the
default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lClokSmp
Sample size while acquiring clock rate, the default value is 10000

lFltSmp
Sample size when finding filter limits, the default value is 1000

3-16

lTailFit
If non-zero a tail-fit will be tried, the default is disabled

lForcFit
If non-zero use the force-fit method, the default is disabled

lMinHits
Minimum hits before attempting a tail-fit in 1000's, the default is 50

lFndEftv
Flag to indicate that an effective jitter calculation is to be attempted

lMinEftv, lMaxEftv
Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

dMinSpan
Minimum span between clock and data edges in seconds, can be used
to match trigger delay to correlate with oscilloscopes.

lGood
Flag indicates valid output data in structure

lRiseCnt
Number of hits in rising edge data

lFallCnt
Number of hits in falling edge data

dDataMin
Minimum value relative to clock edge

dDataMax
Maximum value relative to clock edge

dDataSig
1-Sigma of all values relative to clock

dAvgSkew
Average of all values relative to clock

dUnitInt
Measured Unit Interval, this is based on the clock

lUnitOff, dRiseMin, dRiseMax, dFallMin, dFallMax, lSpanCnt
These values are all used internally, DO NOT ALTER!

tRise
Histogram of rising edge data

tFall
Histogram of falling edge data

tRiseProb
Probability Histogram of rising edge data

tFallProb
Probability Histogram of falling edge data

tBath
Bathtub curves determined from PDF

tEftv
Effective Bathtub curves if lFndEftv is set and a valid fit is obtained

tTfit
Structure containing tail-fit info, see end of chapter for details

3-17

3.1.8 Structure used for Time Series window

typedef struct
{
/* Input parameters */
PARM tParm;
long lNumb;
double dSpan;
long lAutoFix;
/* Output parameters */
long lGood;
double dYstd;
double dAvar;
PLOT tMean;
PLOT tMini;
PLOT tMaxi;
PLOT tTime;
PLOT tSdev;
PLOT tPeak;
} TSER;

tParm
Contains acquisition parameters, see end of chapter for details

lNumb
WavGetTser() can be called repeatedly with the same TSER structure.
Data is then accumulated in the plot structures. This parameter tracks
acquisitions so far, and may be set to 0 to reset. When set to 0 the plot
structures are flushed. This parameter is automatically incremented by
the WavGetTser() function.

dSpan
Time delay between measurements

lAutoFix
If true perform a pulsefind as required

lGood
Flag indicates valid output data in structure

dYstd
1-Sigma value calculated on all data

dAvar
Allan variance calculation

tMean
Contains the average plot array

tMini
Contains the minimum plot array

tMaxi
Contains the maximum plot array

tTime
Contains the time at which measurements were taken

tSdev
Contains the 1-Sigma plot array

tPeak
Contains the (max - min) plot array

3-18

3.1.9 Structure used for Statistics window

typedef struct
{
/* Input parameters */
PARM tParm;
long lPfnd;
long lAutoFix;
/* Output parameters */
long lGood;
double dMean;
double dMaxi;
double dMini;
double dSdev;
double dDuty;
double dFreq;
double dVmin[POSS_CHNS];
double dVmax[POSS_CHNS];
} STAT;

tParm
Contains acquisition parameters, see end of chapter for details

tPfnd
If non-zero a pulse-find is performed before each measure, the default
is to not perform a pulse-find

lAutoFix
If true perform a pulsefind as required

lGood
Flag indicates valid output data in structure

dMean
Contains the returned average value

dMaxi
Contains the returned maximum value

dMini
Contains the returned minimum value

dSdev
Contains the returned 1-Sigma value

dDuty
Contains the returned duty cycle, this is not measured if a TPD
measurement is being performed

dFreq
Contains the frequency of the signal being measured

dVmin
Min voltage returned from last pulse-find

dVmax
Max voltage returned from last pulse-find

3-19

3.1.10 Structure used for Random Data window

typedef struct
{
/* Input parameters */
long lCoun;
long lPcnt;
DCOM tDcom;
/* Output parameters */
long lGood;
double dDjit;
double dRjit;
double dTjit;
PLOT tSigmTail;
} RAND;

lCoun
Count of tail-fits to be performed, use one of the following:

RAND_AUTO Continue to perform tailfits until RJ
is within some percentage of the
previous pass, see lPcnt below

RAND_FIT3 Perform 3 tailfits
RAND_FIT5 Perform 5 tailfits
RAND_FIT9 Perform 9 tailfits
RAND_FIT17 Perform 17 tailfits

lPcnt
Auto-mode succeed percentage, if selected

RAND_PCNT5 RJ within 5% of previous pass
RAND_PCNT10 RJ within 10% of previous pass
RAND_PCNT25 RJ within 25% of previous pass
RAND_PCNT50 RJ within 50% of previous pass

tDcom
Random data window uses a DCOM structure to hold most of the
input and output parameters, see the dataCOM section for detailed
information

lGood
Flag indicates valid output data in structure

dDjit, dRjit, dTjit
Deterministic, random, and total jitter values

tSigmTail
1-Sigma plot based on tail-fit results

3-20

3.2 UTILITY STRUCTURES

The following utility structures are used in the standard window functions:

3.2.1 Basic structure used to return plot data

typedef struct
{
double *dData;
long lNumb, lRsvd;
double dXmin, dXmax;
double dYmin, dYmax;
double dYavg, dYstd;
long lXminIndx;
long lXmaxIndx;
long lYminIndx;
long lYmaxIndx;
double dAltXmin, dAltXmax;
} PLOT;

dData
Pointer to y-axis data array

lNumb
Number of valid data points

lRsvd
Used to track memory allocation

dXmin, dXmax
X-axis values for ends of data array

dYmin, dYmax
Min & Max values in Y-axis data array

dYavg, dYstd
Average & 1-Sigma values for data array

lXminIndx, lXmaxIndx
Used by histograms to indicate location of first and last valid bins

lYminIndx, lYmaxIndx
Indicates the location where the Min & Max values occur in data array

dAltXmin, dAltXmax
Alternate X-axis values, if applicable. For graphs where it makes sense
an alternate X-axis unit may be calculated. Examples include time or
index on a Jitter Analysis 1-sigma plot, or unit interval or time on a
dataCOM bathtub plot. If no applicable alternate unit is defined these
variables will both be set to zero.

3-21

3.2.2 Structure used for parameters of one side of a tail-fit

typedef struct
{

double dCoef[3];
double dDjit;
double dRjit;
double dChsq;
double dLoValu, dHiValu;
double dMuValu;
double dEftvDj, dEftvRj;
} SIDE;

dCoef
Used by WavGetTfit() to generate idealized tail-fit curves

dDjit
Deterministic jitter, this side only

dRjit
Random jitter, this side only

dChsq
ChiSquare indicator, goodness of fit

dLoValu, dHiValu
dXval range over which tail was fitted

dMuValu
Projected dXval where mu was determined

dEftvDj, dEftvRj
Holds the effective jitter values if calculated. To calculate the effective
jitter lFndEftv must contain a non-zero value. Since the effective jitter
is calculated by optimizing a curve-fit a result is not guaranteed. If the
curve-fit fails a negative value will be returned in these variables.

3.2.3 Structure used to hold tail-fit results for histograms

typedef struct
{
long lGood;
SIDE tL, tR;
double dDjit;
double dRjit;
double dTjit;
} TFIT;

lGood
Flag to indicate successful tail-fit

tL, tR
Structures containing individual left & right tail-fit data

dDjit
Deterministic jitter, from both sides

dRjit
Random jitter, average from both sides

dTjit
Total jitter, calculated from bathtub

3-22

3.2.4 Structure used for Acquisition Parameters

typedef struct
{ // Defaults as follows:
long lFuncNum; // FUNC_PER
long lChanNum; // 1
long lStrtCnt; // 1
long lStopCnt; // 2
long lSampCnt; // 300
double dStrtVlt; // 0.0
double dStopVlt; // 0.0
long lStrtArm; // 1
long lStopArm; // 1
long lOscTrig; // CHAN1
long lOscEdge; // EDGE_RISE
long lFiltEnb; // 0
double dFiltMin; // -2.49
double dFiltMax; // 2.49
long lAutoArm; // ARM_STOP
long lArm1Edg; // 1
long lArm2Edg; // 1
double dArm1Vlt; // 0.0
double dArm2Vlt; // 0.0
long lArm2Gat; // 0
long lStampTm; // 0
long lFndMode; // PFND_PEAK
long lFndPcnt; // PCNT_5050
long lFndTrg1; // TRIG_ARM1
long lFndTrg2; // TRIG_ARM1
long lFndTime[2][6]; // { { 20000, 30000, 100,

// 20000, 30000, 100, },
// { 20000, 30000, 100,
// 20000, 30000, 100 } }

long lTimeOut; // 2
long lDsmChan[2]; // MIN_BANK1_CHN

// MIN_BANK2_CHN
} PARM;

lFuncNum
Function to measure, use any of the follow:
2-Channel: FUNC_TPD_PP TPD +/+

FUNC_TPD_MM TPD -/-
FUNC_TPD_PM TPD +/-
FUNC_TPD_MP TPD -/+

1-Channel: FUNC_TT_P Rising edge time
FUNC_TT_M Falling edge time
FUNC_PW_P Positive pulse width
FUNC_PW_M Negative pulse width
FUNC_PER Period
FUNC_FREQ Frequency

lChanNum
Channel to measure, the minimum value is 1, the maximum can be
determined by calling DtsMaxChan()

3-23

lStrtCnt
Channel start count, the minimum value is 1, the maximum can be
determined by calling DtsMaxCnts()

lStopCnt
Channel stop count, the minimum value is 1, the maximum can be
determined by calling DtsMaxCnts()

lSampCnt
Sample size, the minimum value is 1, the maximum can be determined
by calling DtsMaxVals()

lStrtVlt
Start voltage sets the reference voltage used to initiate the time
measurement. The valid range is +/-1.1 volts

lStopVlt
Stop voltage sets the reference voltage used to terminate the time
measurement. The valid range is +/-1.1 volts

lStrtArm
Arm to use for start event, only used if lAutoArm is set to
ARM_EXTRN, the minimum value is 1

lStopArm
Arm to use for stop event, only used if lAutoArm is set to
ARM_EXTRN, the minimum value is 1

lOscTrig
Channel to use for oscilloscope trigger, use any of the follow:
TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, TRIG_CHN2

lOscEdge
Edge to use to trigger oscilloscope, use any of the following:
EDGE_FALL, EDGE_RISE

lFiltEnb
Filter enable, any non-zero value enables filters

dFiltMin
Filter minimum in seconds, only used if lFiltEnb is non-zero
valid range is +/-2.49 seconds

dFiltMax
Filter maximum in seconds, only used if lFiltEnb is non-zero
valid range is +/-2.49 seconds

lAutoArm
Auto arm enable and mode, use any of the following:

ARM_EXTRN Arm using one of the external arms
ARM_START Auto-arm on next start event
ARM_STOP Auto-arm on next stop event
ARM_FIRST Auto-arm insuring start before stop

Note: this mode is frequency limited
 lArm1Edg

Arm1 edge to use, only used if lAutoArm is set to ARM_EXTRN
may be either EDGE_FALL or EDGE_RISE

lArm2Edg
Arm2 edge to use, only used if lAutoArm is set to ARM_EXTRN
may be either EDGE_FALL or EDGE_RISE

3-24

dArm1Vlt
Arm1 voltage, the valid range is +/-1.1 volts
only used if lAutoArm is set to ARM_EXTRN

dArm2Vlt
Arm2 voltage, the valid range is +/-1.1 volts
only used if lAutoArm is set to ARM_EXTRN

lArm2Gat
Enable Arm2 gating, any non-zero value enables gating
When gating is enabled Arm2 edge and reference voltages are
associated with gating.

lStampTm
Any non-zero value enables elapsed time stamping. To perform time
stamping a signal must be present on Arm2, the nature of the signal is
not important - the calibration signal is fine. A successful pulse-find
must have also been performed on Arm2. When time stamping is
enabled an array of time data can be downloaded after a sample is
acquired using the DtsGetTime() function. Each value in this array
represents the time at which it's sample was taken. When time
stamping is enabled the maximum value of lSampCnt is one half its
normal value.

lFndMode
Pulse find mode, may be one of the following:

PFND_FLAT Use flat algorithm for pulse-find calculation
PFND_PEAK Use peak value for pulse-find calculation
PFND_STRB Use strobing method for pulse-find calc.

 lFndPcnt
Pulse find percentage, may be one of the following:

PCNT_5050 Use 50/50 level for pulse-find calculation
PCNT_1090 Use 10/90 level for pulse-find calculation
PCNT_9010 Use 90/10 level for pulse-find calculation
PCNT_USER Do NOT perform pulse-find, manual mode

When this mode is selected valid voltages
must be loaded in the lStrtVlt, lStopVlt,
lArmVlt1, and lArmVlt2 parameters

PCNT_2080 Use 20/80 level for pulse-find calculation
PCNT_8020 Use 80/20 level for pulse-find calculation

 lFndTrg1
Ch1 StrobePF trigger, only valid if lFndMode is PFND_STRB
May be TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, or TRIG_CHN2

lFndTrg2
Ch2 StrobePF trigger, only valid if lFndMode is PFND_STRB
May be TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, or TRIG_CHN2

3-25

lFndTime
StrobePF times, only valid if lFndMode is PFND_STRB
Contains data pertaining to time range over which to perform a
strobing pulse-find, all values are in picoseconds. Values are
contained in a two dimensional array, the first index specifies which
channel the data pertains to, the second index pertains to the following
data:

max_start_delay, max_stop_delay, max_step_increment
min_start_delay, min_stop_delay, min_step_increment

lTimeOut
Seconds for timeout before returning an error

lDsmChan
DSM channel select, determines which channel of the optional switch
matrix is selected if available. The first digit specifies the bank, the
second digit specifies the channel. Valid values are 11-18 for the first
bank and 21-28 for the second bank.

3.2.5 Structure with FFT window and analysis parameters

typedef struct
{ // Defaults as follows:
long lWinType; // FFT_KAI
long lPadMult; // 4
double dCtrFreq; // 2500
double dRngWdth; // 100
double dAlphFct; // 8.0
} FFTS;

lWinType
Window type, use one of the following:

FFT_RCT Rectangular window
FFT_KAI Kaiser-Bessel window
FFT_TRI Triangular window
FFT_HAM Hamming window
FFT_HAN Hanning window
FFT_BLK Blackman window
FFT_GAU Gaussian window

lPadMult
Power of 2 to use for padding (0 - 5)

dCtrFreq
Frequency over which to assess dYavg in plot array (Hz)

dRngWdth
Width over which to assess dYavg (Hz)

dAlphFct
Alpha factor when using Kaiser-Bessel window

3-26

3.2.6 Structure used for Jitter Generator Parameters

typedef struct
{ // Defaults as follows:
long lSnthEnb; // 0
long lOutpEnb; // 0
double dOutpFrq; // 500 MHz
double dDutyCyc; // 50
long lSyncTyp; // SYNC_BIT
long lSyncDiv; // 1
double dSyncFrq; // 500 MHz
double dEftvFrq; // 500 MHz
long lOutpLvl; // LEVL_CUSTOM1
long lSyncLvl; // LEVL_CUSTOM1
double dOutpAmp; // 1.0
double dSyncAmp; // 1.0
double dOutpOff; // 0.0
double dSyncOff; // 0.0
long lOutpTrm; // TERM_GRND
long lSyncTrm; // TERM_GRND
long lJitEnab; // 0
long lJitMode; // JITT_PER
long lJitUnit; // UNIT_SEC
double dJitAmpl; // 0
double dJitFreq; // 1 MHz
long lJitDist; // DIST_SIN
} JGEN;

lSnthEnb
Synthesizer enabled if non-zero

lOutpEnb
Output enabled if non-zero

dOutpFrq
Main clock frequency in Hertz

dDutyCyc
Duty cycle [0.0 < dDutyCyc < 100.0]

lSyncTyp
Sync signal source, use any of the following:

SYNC_JIT Synchronized with jitter source
SYNC_BIT Generated by bit clock
SYNC_IND Independent of jitter or output

lSyncDiv
Sync divider, only used if lSyncTyp is SYNC_BIT or SYNC_IND

dSyncFrq
Sync frequency in Hertz, only used if lSyncTyp is SYNC_IND

dEftvFrq
Effective Sync Frequency – this is Read Only! This is calculated by
the device based on the current settings of lSyncType, lSyncDiv, and
lSyncFrq.

3-27

lOutpLvl
Output level, the following are valid values:

LEVL_ECLGND -0.9 to –1.7 terminated 50Ω to GND
LEVL_ECLNEG2 -0.9 to –1.7 terminated 50Ω to –2V
LEVL_ECLOPEN -0.9 to –1.7 terminated Open Circuit
LEVL_PECLPOS3 4.2 to 3.2 terminated 50Ω to +3V
LEVL_PECLOPEN 4.2 to 3.2 terminated Open Circuit
LEVL_TTLGND 2.65 to 0.15 terminated 50Ω to GND
LEVL_TTLOPEN 2.65 to 0.15 terminated Open Circuit
LEVL_CMOS3GND 2.65 to 0.15 terminated 50Ω to GND
LEVL_CMOS3OPN 2.65 to 0.15 terminated Open Circuit
LEVL_CMOS5OPN 2.65 to 0.15 terminated Open Circuit
LEVL_CUSTOM1 User selectable set
LEVL_CUSTOM2 User selectable set
LEVL_CUSTOM3 User selectable set

lSyncLvl
Sync level, valid values are the same as those defined for lOutpLvl
above except that LEVL_ECLGND is not valid.

dOutpAmp
Output amplitude if one of the three custom levels is selected

dSyncAmp
Sync amplitude if one of the three custom levels is selected

dOutpOff
Output offset if one of the three custom levels is selected

dSyncOff
Sync offset if one of the three custom levels is selected

lOutpTrm
Output termination if one of the three custom levels is selected, use
any of the following:

TERM_GRND Terminated is 50Ω to 0 Volts
TERM_NEG2 Terminated is 50Ω to -2 Volts
TERM_POS3 Terminated is 50Ω to +3 Volts
TERM_OPEN Terminated to Open Circuit

lSyncTrm
Sync termination if one of the three custom levels is selected, use any
of the values listed for lOutpTrm

lJitEnab
Jitter enabled if non-zero

lJitMode
The means by which jitter amplitude is specified, use one of the
following:

JITT_PER Specified on a single period basis
JITT_CUM Specified as a maximum across

multiple repetitions of the waveform

3-28

lJitUnit
The units by which jitter amplitude is specified, use one of the
following:

UNIT_SEC Specified in seconds
UNIT_UI Specified in unit intervals [0.0 – 1.0]
UNIT_DEG Specified in degrees [0.0 – 360.0]

dJitAmpl
Jitter amplitude in selected units

dJitFreq
Jitter frequency in Hertz

lJitDist
Jitter distribution, may be one of the following:

DIST_SIN Sine waveform
DIST_SAW Sawtooth waveform
DIST_TRI Triangular waveform
DIST_SSC Spread Spectrum Curve
DIST_RND Random Distribution

3-29

3.2.7 Structure used for Arm Generator Parameters

typedef struct
{ // Defaults as follows:
PARM tParm; // Same as PARM in 3.2.4

// except: lSampCnt = 50
// and lAutoArm = ARM_EXTRN

char bPtnBits[10]; // All zeros
char bMskBits[10]; // All zeros
char sPtnName[128]; // “sof.ptn”
long lInvtPtn; // 0
long lCyclDly; // 0
long lFineDly; // 0
long lFunctSw; // 0
long lSpeedSw; // 0
long lProtoSw; // 0
long lCommDet; // 0
long lCDlyByp; // 0
long lEdgeCnt; // 0x0F

} AGEN;

tParm
This structure contains the DT207x settings to be used when
optimizing the marker position with the ArmFindDly() function.
This is mainly used to specify the Arm and Channel, but may also be
used to override default voltage thresholds or other parameters.

bPtnBits, bMskBits
These fields are used to hold the internal representation of the pattern,
the details of these fields is not important from an application
standpoint. The first time ArmSetParm() is called the pattern is
loaded into these fields from the file named in the sPtnName field.
This internal representation is used for all subsequent operations.

sPtnName
Name of pattern file to be used, the file must exist or an error will be
returned. The first time ArmSetParm() is called, appropriate values
are loaded into the bPtnBits and bMskBits fields. If the pattern file is
to be changed, both theses fields should be cleared to all zeros so that
the new pattern will be loaded on the next call to ArmSetParm(). The
default file is sof.ptn

lInvtPtn
Invert the pattern bits if non-zero, this is used to compensate for
sending a polarity sensitive signal through an amplifier stage which
inverts the signal. This parameter is not used if lFunctSw is set to
Edge Count Mode.

lCyclDly
Cycle Delay Increment [0 - 39]. The value of each is increment is
dependent on the protocol. For 1X or 2X Fibre Channel each
increment is equal to 941ps. For 1X or 2X GigaBit Ethernet each
increment is equal to 800ps.

lFineDly
Fine Delay Increment [0 - 255]. Each increment is equal to
approximately 15.686ps, giving a total possible delay of 4ns.

3-30

lFunctSw
Marker Generation Function, the following are valid values:

0 Pattern Match Mode
1 Edge Count Mode

lSpeedSw
Speed Switch, the following are valid values:

0 1X Fibre Channel or GigaBit Ethernet
1 2X Fibre Channel or GigaBit Ethernet

This parameter is not used if lFunctSw is set to Edge Count Mode.
lProtoSw

Protocol Switch, the following are valid values:
0 Fibre Channel
1 GigaBit Ethernet

This parameter is not used if lFunctSw is set to Edge Count Mode.
lCommDet

Enable comma detect in the AG-100’s front end SERDES if non-zero.
lCDlyByp

Bypass cycle based delay circuitry if non-zero.
lEdgeCnt

Edge count to be used if lFunctSw is set to Edge Count Mode. It
should be entered as either the count of positive edges or the count of
negative edges (they must be the same), but not the sum of both.

4-1

CHAPTER 4 – LOW LEVEL FUNCTIONS

The Wavecrest Production API provides a number of low level functions
to allow programmers to quickly integrate DTS207x functionality into
their applications. Aside from the initialization and termination functions,
these functions are not necessary if the high level window function calls
detailed in Chapter 2 are used. However, these functions are provided in
order to simplify many of the details involved in a programmer developing
their own algorithms.

4.1 INITIALIZATION AND TERMINATION FUNCTIONS

These functions are provided to perform initialization tasks and cleanup
prior to termination.

4.1.1 Initialize Device

long DtsInitDev (char *sDevName, long lBrdNumb,
long lBrdAddr);

Input:
sDevName Pointer to device name if UNIX platform
lBrdNumb GPIB board number
lBrdAddr GPIB board address

Return:
0 on Success or Error Code on Failure

Example:
DtsInitDev (“dev5”, 0, 5);

This function must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The first
parameter is used to specify the GPIB device name on UNIX platforms
and is ignored on Microsoft Windows. The second parameter is the board
number, and the final parameter is the device number.

A successful call to DtsInitDev() must be accomplished before any other
calls to the Wavecrest Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

4-2

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and

symbolic name hpib.
7,5 Device at bus address 5, and

connected to an interface card at
logical unit 7.

lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
address 128.10.0.3 which contains an
hpib interface with device at bus
address 5.

lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
hpibsrv.wave.com which contains an
interface card at logical unit 7 with
primary device at bus address 5.

4.1.2 Cleanup Prior to Application Termination

long DtsExitDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
DtsExitDev ();

Before terminating the application, the supplied cleanup function should
be called. DtsExitDev() closes the GPIB device driver. After this cleanup
has been performed the application may terminate normally.

4-3

4.2 INFORMATION FUNCTIONS

These functions provide various information services.

4.2.1 Get API Version

long DtsGetVers (void);

Input:
None

Return:
Major version in high byte, minor version in low byte

Example:
VerNum = DtsGetVers ();

This function may be called to determine the current API version.

4.2.2 Get Maximum Channel Number

long DtsMaxChan (void);

Input:
None

Return:
Maximum channel number supported on this device

Example:
MaxChan = DtsMaxChan ();

This function may be called to determine the maximum channel number
on this device. The first channel is always number 1, and current devices
only have 2 channels. This function is intended to support future
expansion when devices with more than two channels become available.

4-4

4.2.3 Get Maximum Start/Stop Count Values

long DtsMaxCnts (void);

Input:
None

Return:
Maximum number of start/stop count values obtained in a single
measurement

Example:
DtsMaxCnts ();

This function may be called to determine the maximum number of
start/stop counts that can be configured. This function is intended to
support future expansion when additional counter values may be allowed.

4.2.4 Get Maximum Sample Values

long DtsMaxVals (void);

Input:
None

Return:
Max. number of sample values obtained in a single measurement

Example:
DtsMaxVals ();

This function may be called to determine the maximum number of
samples that can be taken with a single acquisition. This function is
intended to support future expansion when additional samples may be
taken in a single measurement.

4-5

4.3 UTILITY FUNCTIONS

These functions provide various utility services.

4.3.1 Enable or Disable Front Panel Display

long DtsSetDisp (long lDisp);

Input:
lDisp Non-zero value to enable, zero to disable

Return:
0 on Success or Error Code on Failure

Example:
DtsSetDisp (1);

This function may be called to turn the front panel display on or off.
Performance is improved if the front panel display is disabled.

4.3.2 Download Acquisition Parameters to Device

long DtsSetParm (PARM *tParm);

Input:
tParm Pointer to Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
DtsSetParm (&tParm);

This function may be called to download the complete set of acquisition
parameters to the device. Note that the Parameter Structure contains all
the information necessary to completely define a basic measurement.
After successfully issuing this command an acquisition may be performed
using the DtsRqstAcq() or DtsGetData() command.

In order to optimize performance, this function keeps track of parameters
that have been configured and only downloads parameters that have
changed since the last time it was called. However, parameters which are
manually sent using the DtsTalkDev() function will not be tracked, and
could therefore cause unpredictable results. If this function is used to
configure parameters, it should be used exclusively, and no parameters
should be manually sent.

4-6

4.3.3 Perform a Pulse-find Operation

long DtsPulsFnd (PARM *tParm);

Input:
tParm Pointer to Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
DtsPulsFnd (&tParm);

This function is used to perform a pulse-find operation based on the
channel, arming, and pulse-find options in the Parameter Structure. On
successful completion, the resulting voltages are returned in the
appropriate fields of the Parameter Structure.

A higher level function WavPulsFnd() exists, which should be used in
conjunction with the higher level window functions. In particular
Oscilloscope and Time Digitizer windows require the extra steps taken by
the higher level pulse-find function.

4.3.4 Update Voltage Information

long DtsGetVolt (PARM *tParm);

Input:
tParm Pointer to Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
DtsGetVolt (&tParm);

This function is used to update the threshold voltage information in the
Parameter Structure. On successful completion, the threshold voltages
currently active in the DTS207X are returned in the appropriate fields of
the Parameter Structure.

4-7

4.3.5 Device Reset

long DtsRsetDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
DtsRsetDev ();

This function will reset the device to the power-up state. The existing
machine state is lost, and all parameters are restored to their default
values.

4-8

4.4 COMMUNICATION FUNCTIONS

These functions provide various communication services.

4.4.1 Send Command String to Device

long DtsTalkDev (char *sCmnd);

Input:
sCmnd Pointer to Command String

Return:
0 on Success or Error Code on Failure

Example:
DtsTalkDev (“:ACQ:COUN 32000”);

This function may be used to send individual command strings to the
device. This function should be used whenever no response is expected
from the device.

4.4.2 Send Command String and Receive ASCII Response

long DtsRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
sCmnd Pointer to Command String
sSval Pointer to Buffer to Hold Response String
lLeng Length of Buffer to Hold Response String

Return:
0 on Success or Error Code on Failure
Response is placed in Response Buffer on Success

Example:
char buffer[128];
DtsRqstAsc (“:ACQ:FUNC?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4-9

4.4.3 Send Command String and Receive Double Precision
Floating Point Number as Response

long DtsRqstDbl (char *sCmnd, double *dDval);

Input:
sCmnd Pointer to Command String
dDval Pointer to double to Hold Response

Return:
0 on Success or Error Code on Failure
Response is placed in Double Precision Number on Success

Example:
double mean;
DtsRqstDbl (“:MEAS:AVER?”, &mean);

This function may be used to send individual command strings to the
device when a Double Precision Floating Point number is expected as a
response.

4.4.4 Send Command String and Receive Long Integer as
Response

long DtsRqstInt (char *sCmnd, long *lIval)

Input:
sCmnd Pointer to Command String
lIval Pointer to Long Integer to Hold Response

Return:
0 on Success or Error Code on Failure
Response is placed in Long Integer on Success

Example:
long switch;
DtsRqstInt (“:CHAN:SWIT?”, &switch);

This function may be used to send individual command strings to the
device when a Long Integer is expected as a response.

4-10

4.5 ACQUISITION FUNCTIONS

These functions provide various acquisition services.

4.5.1 Request Data Acquisition

long DtsRqstAcq (long lFunc, double *dMean, double *dSdev,
double *dMini, double *dMaxi);

Input:
lFunc Function Number – any of the following constants:

Constant Description Channels
FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

dMean Pointer to double to hold Mean or NULL
dSdev Pointer to double to hold 1-Sigma or NULL
dMini Pointer to double to hold Minimum or NULL
dMaxi Pointer to double to hold Maximum or NULL

Return:
0 on Success or Error Code on Failure

Example:
double mean;
DtsRqstAcq (FUNC_PER, &mean, NULL, NULL, NULL);

This function may be used to request that a data acquisition be performed
with statistics returned. If you do not require any of the individual
statistics to be returned, you can pass NULL instead of a valid pointer.

4-11

4.5.2 Request Data Acquisition with Raw Data Returned

long DtsGetData (long lFunc, double *dMean, double *dSdev,
double *dMini, double *dMaxi,
long *lNumb, void *pData, long lSize);

Input:
lFunc Function Number – any of the following constants:

Constant Description Channels
FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

dMean Pointer to double to hold Mean or NULL
dSdev Pointer to double to hold 1-Sigma or NULL
dMini Pointer to double to hold Minimum or NULL
dMaxi Pointer to double to hold Maximum or NULL
lNumb Pointer to Long Integer to hold Number of Raw

Data Values
pData Pointer to Data Array to hold Raw Data Values
lSize Long Integer Indicating size of Data Type for Raw

Data Values
Return:

0 on Success or Error Code on Failure
Example:

long numb;
double *data = malloc (32000 * sizeof (double));
DtsGetData (FUNC_PER, &mean, NULL, NULL, NULL,

 &numb, data, sizeof (double));

This function may be used to request that a data acquisition be performed
with statistics and raw data values returned. If you do not require any of
the individual statistics to be returned, you can pass NULL instead of a
valid pointer. The application is responsible for allocating a sufficient
data array to contain all of the raw data values. The size returned in
“lNumb” may be different than would be expected by the sample size due
to filters being enabled.

4-12

4.5.3 Perform Analysis Macro

long DtsGetMacr (long lCmnd, long lFunc, long lChan,
long lStrt, long lStop, long lIncr,
long lXtra, float *fData, long lDesc);

Input:
lCmnd Type of Analysis Macro – one of the following:

Constant Description
ANAL_FUNC Function analysis macro
ANAL_JITT Jitter analysis macro
ANAL_RANG Range analysis macro

lFunc Function Number – any of the following constants:
Constant Description Channels
FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

lChan Channel to perform macro on: 1 or 2
lStrt, lStop, lIncr, lXtra

Parameters which are based on sCmnd as follows:
ANAL_FUNC
lStrt Beginning start count
lStop Ending start count
lIncr Start Count Increment
lXtra Relationship of Stop Count to Start

the following constants may be used:
Constant Description
ANL_FNC_FIRST Arm start first
ANL_FNC_PLUS1 Stop = Start+1
ANL_FNC_START Stop = Start

ANAL_JITT
lStrt Start count for all measurements
lStop Beginning Stop count
lIncr Stop Count Increment
lXtra Ending Stop count
ANAL_RANG
lStrt Start count for all measurements
lStop Beginning Stop count
lIncr Stop Count Increment
lXtra Ending Stop count

4-13

fData Pointer to Single Precision Data Array to hold
Event Data

lDesc Descriptor indicating values per Event defined as
follows:

ANAL_FUNC
2 Mean and Std. Deviation
4 Mean Std. Deviation, Min, & Max
ANAL_JITT
2 Std. Deviation and Mean
3 Std. Deviation, Min, & Max
ANAL_RANG
2 Std. Deviation and Mean
3 Std. Deviation, Min, & Max

Return:
0 on Success or Error Code on Failure

Example:
long ValuesPerEvent = 2;
long StartCount = 1, StopIncr = 1;
long MinStopCount = 2, Spans = 250;
long MaxStopCount = MinStopcount + Spans – 1;
float *data = malloc (Spans * ValuesPerEvent * sizeof (float));
DtsGetMacr (ANAL_JITT, FUNC_PER, 1, StartCount,

MinStopCount, StopCountIncr, MaxStopCount, data,
ValuesPerEvent);

This function may be used to improve performance when statistics are
required across a series of spans. These macros are primarily suited for
the Jitter Analysis and Function Analysis windows. The results are
returned in a single interleaved array of floats. The application is
responsible for allocating a sufficient data array to contain the entire series
of statistics.

4-14

4.5.4 Request Time Stamp Data

long DtsGetTime (void *pData, long lNumb);

Input:
pData Pointer to array of doubles to hold Time Values
lNumb Number of Time Values to Read

Return:
0 on Success or Error Code on Failure

Example:
long numb;
double *data = malloc (16000 * sizeof (double));
double *time = malloc (16000 * sizeof (double));
DtsGetData (FUNC_PER, &mean, NULL, NULL, NULL,

 &numb, data, sizeof (double));
DtsGetTime (time, numb);

This function may be used to request the time stamp data after a data
acquisition is performed. It is only valid when elapsed time stamping is
enabled (stamp_tm field enabled in PARM structure). Note that when
time stamping is enabled only half the maximum sample size is available
(the DtsMaxVals() function can be used to obtain the maximum sample
size). Also note that a signal must be present on Arm2 with arming
enabled, and a valid pulse-find must have been previously completed. The
calibration signal is suitable for this purpose.

This function returns an array of time values detailing when measurements
were taken, these values are returned in seconds. By analyzing this array,
the average sampling rate can be determined.

4-15

4.5.5 Request Strobing Oscilloscope Data

long DtsStrbWin (long lChan, long lStar, long lStop,
long lIncr, double *dMean, long *lNumb,
double *dData);

Input:
lChan Channel to be measured
lStar Start of Strobe Window in picoseconds, valid range

is 20,000 – 100,000,000
lStop End of Strobe Window in picoseconds, valid range

is 20,000 – 100,000,000
lIncr Increment between strobed values, 10 is the

minimum valid value
dMean Pointer to double to hold average voltage
lNumb Pointer to Long Integer to hold Number of Raw

Data Values
dData Pointer to array of doubles to hold Voltage Values

Return:
0 on Success or Error Code on Failure

Example:
long numb;
long values = (40000 – 20000) / 10 + 1;
double mean, *data = malloc (values * sizeof (double));
DtsStrbWin (1, 20000, 40000, 10, &mean, &numb, data);

This function may be used to request an array of voltage data from the
strobing oscilloscope. The trigger source and voltage threshold must have
been previously set. The application is responsible for allocating a
sufficient data array to contain all of the raw data values.

4-16

4.6 CALIBRATION FUNCTIONS

These functions provide various calibration services.

4.6.1 Request External Calibration

long DtsExtnCal (long lDoDC, long (*pNext)(void));

Input:
lDoDC A non-zero value causes a DC calibration to be

performed first
pNext Pointer to a function which is called whenever the

user must be prompted to change input source, if a
non-zero value is returned execution is continued, if
0 is returned execution is aborted

Return:
0 on Success or Error Code on Failure

Example:
char *prompt[] = {"\nConnect Ch1 to Cal1 AND Ch2 to Cal2...",

 "\nCross cables at calibration signals..." };
long mesg;

long pNext (void)
{
printf (prompt[mesg++]);
getch ();
return 1;
}

void main (void)
{
mesg = 0;
if (DtsExtnCal (0, pNext))

printf ("\nAborted due to error...");
}

This function may be used to request that an external calibration be
performed. Since user interaction is required during the calibration, a
callback function must be passed to this function which is called allowing
the application to provide prompts as required.

4-17

4.6.2 Request Internal Calibration

long _stdcall DtsIntnCal (long lMult);

Input:
lMult Multiplier indicating the length of calibration

Return:
0 on Success or Error Code on Failure

Example:
DtsIntnCal (1);

This function may be used to request that an internal calibration be
performed. A multiplier is provided which lengthens the calibration time,
thereby increasing the quality of the calibration. The standard calibration
time is approximately 5-1/2 minutes.

4-18

4.6.3 Request Strobe Calibration

long DtsStrbCal (long (*pNext)(void));

Input:
pNext Pointer to a function which is called whenever the

user must be prompted to change input source, if a
non-zero value is returned execution is continued, if
0 is returned execution is aborted

Return:
0 on Success or Error Code on Failure

Example:
char *prompt[] = {"\nConnect Cal1 to Ch1 AND Cal2 to Arm1..",
 "\nMove Cal2 from Arm1 to Arm2...........",
 "\nMove Cal1 from Ch1 to Ch2.............", };
long mesg;

long pNext (void)
{
printf (prompt[mesg++]);
getch ();
return 1;
}

void main (void)
{
mesg = 0;
if (DtsStrbCal (pNext))

printf ("\nAborted due to error...");
}

This function may be used to request that a strobe calibration be
performed. Since user interaction is required during the calibration, a
callback function must be passed to this function which is called allowing
the application to provide prompts as required.

4-19

4.7 GENERIC GPIB COMMUNICATION FUNCTIONS

These functions provide access to generic GPIB devices. They can be
used to access pattern generators, voltmeters, etc. This interface handles
the low-level communication tasks. However, knowledge of the
programming language specific to the target device will be required.

4.7.1 Open a Generic GPIB Device

long GpibDevOpn (char *sDevName, long lBrdNumb,
long lBrdAddr);

Input:
sDevName Pointer to device name if UNIX platform
lBrdNumb GPIB board number
lBrdAddr GPIB board address

Return:
A valid device descriptor on Success or DTS_ERROR on Failure

Example:
GpibDevOpn (“dev5”, 0, 5);

This function must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The first
parameter is used to specify the GPIB device name on UNIX platforms
and is ignored on Microsoft Windows. The second parameter is the board
number, and the final parameter is the device number.

A successful call to GpibDevOpn() must be accomplished before any
other calls to the Wavecrest Production API concerning this device.

The device descriptor that is returned must be used on all subsequent calls
to access this device.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

4-20

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and

symbolic name hpib.
7,5 Device at bus address 5, and

connected to an interface card at
logical unit 7.

lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
address 128.10.0.3 which contains an
hpib interface with device at bus
address 5.

lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
hpibsrv.wave.com which contains an
interface card at logical unit 7 with
primary device at bus address 5.

4.7.2 Read Data from a Generic GPIB Device

long GpibDevGet(long lDevNumb, char *sBuff, long *lNumb);

Input:
lDevNumb Device descriptor returned by GpibDevOpn
sBuff Pointer to buffer to hold response
lNumb Pointer to Long to hold length of response.

On Entry this variable should contain the
number of byte to attempt to read. On return
it will be updated to reflect the actual
number of bytes read.

Return:
0 on Success or Non-Zero number on Failure
Response is placed in Response Buffer on Success

Example:
long lDevNum;
char buffer[256];
lDevNum = GpibDevOpn (“dev6”, 0, 6);
GpibDevSnd (lDevNum, “*IDN?”);
GpibDevGet (lDevNum, buffer, strlen (buffer));

This function may be called to read data back from a generic GPIB device.
You normally use this command in conjunction with a GpibDevSnd()
command requesting information. The GpibDevGet() command is then
used to retrieve the response.

4-21

4.7.3 Send Data to a Generic GPIB Device

long GpibDevSnd (long lDevNumb, char *sCmnd);

Input:
lDevNumb Device descriptor returned by GpibDevOpn
sCmnd Pointer to command string

Return:
0 on Success or Non-Zero number on Failure

Example:
long lDevNum;
lDevNum = GpibDevOpn (“dev6”, 0, 6);
GpibDevSnd (lDevNum, “*RST?”);

This function may be called to send data to a generic GPIB device. A
successful call to GpibDevOpn() must have been previously performed in
order to obtain a device descriptor to the device.

4.7.4 Cleanup Prior to Application Termination

long GpibDevCls (long lDevNumb);

Input:
lDevNumb Device descriptor returned by GpibDevOpn

Return:
0 on Success or Error Code on Failure

Example:
long lDevNum;
lDevNum = GpibDevOpn (“dev6”, 0, 6);
GpibDevCls (lDevNum);

Before terminating the application, the supplied cleanup function should
be called. GpibDevCls() closes the GPIB device driver. After this
cleanup has been performed the application may terminate normally.

4-22

4.8 DTS550 JITTER GENERATOR FUNCTIONS

These functions provide access to a Wavecrest DTS550 Jitter Generator.

4.8.1 Initialize Jitter Generator Device

long GenInitDev (char *sDevName, long lBrdNumb,
long lBrdAddr);

Input:
sDevName Pointer to device name if UNIX platform
lBrdNumb GPIB board number
lBrdAddr GPIB board address

Return:
0 on Success or Error Code on Failure

Example:
GenInitDev (“dev5”, 0, 5);

This function must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The first
parameter is used to specify the GPIB device name on UNIX platforms
and is ignored on Microsoft Windows. The second parameter is the board
number, and the final parameter is the device number.

A successful call to GenInitDev() must be accomplished before any other
calls to a Jitter Generator using the Wavecrest Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and

symbolic name hpib.
7,5 Device at bus address 5, and

connected to an interface card at
logical unit 7.

lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
address 128.10.0.3 which contains an
hpib interface with device at bus
address 5.

lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
hpibsrv.wave.com which contains an
interface card at logical unit 7 with
primary device at bus address 5.

4-23

4.8.2 Cleanup Prior to Application Termination

long GenExitDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
GenExitDev ();

Before terminating the application, the supplied cleanup function should
be called. GenExitDev() closes the GPIB device driver. After this
cleanup has been performed the application may terminate normally.

4.8.3 Enable or Disable Front Panel Display

long GenSetDisp (long lDisp);

Input:
lDisp Non-zero value to enable, zero to disable

Return:
0 on Success or Error Code on Failure

Example:
GenSetDisp (1);

This function may be called to turn the front panel display on or off.

4.8.4 Retrieve Setup Parameters from Jitter Generator

long GenGetParm (JGEN *tJgen);

Input:
tJgen Pointer to Jitter Generator Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
GenGetParm (&tJgen);

This function may be called to retrieve the complete set of jitter generator
parameters. Note that the Jitter Generator Parameter Structure contains all
the information necessary to completely define an output state.

4-24

4.8.5 Download Setup Parameters to Jitter Generator

long GenSetParm (JGEN *tJgen);

Input:
tJgen Pointer to Jitter Generator Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
GenSetParm (&tJgen);

This function may be called to download the complete set of jitter
generator parameters. Note that the Jitter Generator Parameter Structure
contains all the information necessary to completely define an output state.

In order to optimize performance, this function keeps track of parameters
that have been configured and only downloads parameters that have
changed since the last time it was called. However, parameters which are
manually sent using the GenTalkDev() function will not be tracked, and
could therefore cause unpredictable results. If this function is used to
configure parameters, it should be used exclusively, and no parameters
should be manually sent.

4.8.6 Fill a Jitter Generator Structure with Default Values

void GenDefParm (JGEN *tJgen);

Input:
tJgen Pointer to Jitter Generator Parameter Structure

Return:
None

Example:
JGEN tJgen;
GenDefJgen (&tJgen);

This function is used to fill a Jitter Generator Parameter Structure with
default values. These parameters could then be downloaded to the
DTS550 by calling the GenSetParm() function. Using this function
insures that all parameters contain reasonable values.

It is not necessary to clear a Parameter Structure using the standard
memset() function prior to calling this function, as no dynamic memory
allocation information is contained within the Parameter Structure.

4-25

4.8.7 Jitter Generator Reset

long GenRsetDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
GenRsetDev ();

This function will reset the device to the power-up state. The existing
machine state is lost, and all parameters are restored to their default
values.

4.8.8 Send Command String to Device

long GenTalkDev (char *sCmnd);

Input:
sCmnd Pointer to Command String

Return:
0 on Success or Error Code on Failure

Example:
GenTalkDev (“:JITT:FREQ MAX”);

This function may be used to send individual command strings to the
device. This function should be used whenever no response is expected
from the device.

4.8.9 Send Command String and Receive ASCII Response

long GenRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
sCmnd Pointer to Command String
sSval Pointer to Buffer to Hold Response String
lLeng Length of Buffer to Hold Response String

Return:
0 on Success or Error Code on Failure
Response is placed in Response Buffer on Success

Example:
char buffer[128];
GenRqstAsc (“:JITT:FREQ?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4-26

4.8.10 Send Command String and Receive Double Precision
Floating Point Number as Response

long GenRqstDbl (char *sCmnd, double *dDval);

Input:
sCmnd Pointer to Command String
dDval Pointer to double to Hold Response

Return:
0 on Success or Error Code on Failure
Response is placed in Double Precision Number on Success

Example:
double freq;
GenRqstDbl (“:JITT:FREQ?”, &freq);

This function may be used to send individual command strings to the
device when a Double Precision Floating Point number is expected as a
response.

4.8.11 Send Command String and Receive Long Integer as
Response

long GenRqstInt (char *sCmnd, long *lIval)

Input:
sCmnd Pointer to Command String
lIval Pointer to Long Integer to Hold Response

Return:
0 on Success or Error Code on Failure
Response is placed in Long Integer on Success

Example:
long preset;
GenRqstInt (“:JITT:PRES?”, &preset);

This function may be used to send individual command strings to the
device when a Long Integer is expected as a response.

4-27

4.9 AG-100 ARM GENERATOR FUNCTIONS

These functions provide access to a Wavecrest AG-100 Arm Generator.

4.9.1 Initialize Arm Generator Device

long ArmInitDev (char *sDevName, long lBrdNumb,
long lBrdAddr);

Input:
sDevName Pointer to device name if UNIX platform
lBrdNumb GPIB board number
lBrdAddr GPIB board address

Return:
0 on Success or Error Code on Failure

Example:
ArmInitDev (“dev7”, 0, 7);

This function must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The first
parameter is used to specify the GPIB device name on UNIX platforms
and is ignored on Microsoft Windows. The second parameter is the board
number, and the final parameter is the device number.

A successful call to ArmInitDev() must be accomplished before any other
calls to a Arm Generator using the Wavecrest Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and

symbolic name hpib.
7,5 Device at bus address 5, and

connected to an interface card at
logical unit 7.

lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
address 128.10.0.3 which contains an
hpib interface with device at bus
address 5.

lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
hpibsrv.wave.com which contains an
interface card at logical unit 7 with
primary device at bus address 5.

4-28

4.9.2 Cleanup Prior to Application Termination

long ArmExitDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
ArmExitDev ();

Before terminating the application, the supplied cleanup function should
be called. ArmExitDev() closes the GPIB device driver. After this
cleanup has been performed the application may terminate normally.

4.9.3 Download Setup Parameters to Arm Generator

long ArmSetParm (AGEN *tAgen);

Input:
tAgen Pointer to Arm Generator Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
ArmSetParm (&tAgen);

This function may be called to download the complete set of arm
generator parameters. Note that the Arm Generator Parameter Structure
contains all the information necessary to completely define an output state.

In order to optimize performance, this function keeps track of parameters
that have been configured and only downloads parameters that have
changed since the last time it was called. However, parameters which are
manually sent using the ArmTalkDev() function will not be tracked, and
could therefore cause unpredictable results. If this function is used to
configure parameters, it should be used exclusively, and no parameters
should be manually sent.

4-29

4.9.4 Fill a Arm Generator Structure with Default Values

void ArmDefParm (AGEN *tAgen);

Input:
tAgen Pointer to Arm Generator Parameter Structure

Return:
None

Example:
AGEN tAgen;
ArmDefAgen (&tAgen);

This function is used to fill an Arm Generator Parameter Structure with
default values. These parameters could then be downloaded to the
AG-100 by calling the ArmSetParm() function. Using this function
insures that all parameters contain reasonable values.

It is not necessary to clear a Parameter Structure using the standard
memset() function prior to calling this function, as no dynamic memory
allocation information is contained within the Parameter Structure.

4.9.5 Arm Generator Reset

long ArmRsetDev (void);

Input:
None

Return:
0 on Success or Error Code on Failure

Example:
ArmRsetDev ();

This function will reset the device to the power-up state. The existing
machine state is lost, and all parameters are restored to their default
values.

4-30

4.9.6 Send Command String to Device

long ArmTalkDev (char *sCmnd);

Input:
sCmnd Pointer to Command String

Return:
0 on Success or Error Code on Failure

Example:
ArmTalkDev (“:PATT C14FAC14FA”);

This function may be used to send individual command strings to the
device. This function should be used whenever no response is expected
from the device.

4.9.7 Send Command String and Receive ASCII Response

long ArmRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
sCmnd Pointer to Command String
sSval Pointer to Buffer to Hold Response String
lLeng Length of Buffer to Hold Response String

Return:
0 on Success or Error Code on Failure
Response is placed in Response Buffer on Success

Example:
char buffer[128];
ArmRqstAsc (“:PATT?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4-31

4.9.8 Find Arm Delay for Optimal Marker Placement

long ArmFindDly (AGEN *tAgen);

Input:
tAgen Pointer to Arm Generator Parameter Structure

Return:
0 on Success or Error Code on Failure

Example:
ArmFindDly (&tAgen);

This function may be called to find the delay that provides the optimal
marker placement. The settings contained in the tParm member of the
AGEN structure are DTS207x parameters used as feedback for assessing
the marker placement. When this function successfully returns, the
lCyclDly and lFineDly parameters will be altered to the values that were
determined to provide the greatest jitter tolerance.

This page intentionally left blank.

5-1

CHAPTER 5 – CODE SAMPLES

The following code samples are provided in order to aid in getting started
using the Wavecrest Production API. These code samples are provided for
instructional purposes only.

5.1 MODIFYING WINDOW STRUCTURE
PARAMETERS

The following code snippet shows how parameters pertaining to a high-
level window structure may be modified.

/* Allocate window structure */
STAT tStat;

/* Zero out the structure, and initialize to defaults */
memset (&tStat, 0, sizeof (STAT));
WavDefStat (&tStat);

/* Change input parameters from default */
tStat.tParm.lFuncNum = FUNC_PW_P; /* Function PW+ */
tStat.tParm.lChanNum = 2; /* Channel 2 */
tStat.tParm.lAutoArm = ARM_EXTRN; /* External Arm */
tStat.tParm.lStrtArm = 2; /* Start Arm 2 */
tStat.tParm.lStopArm = 2; /* Stop Arm 2 */
tStat.tParm.lSampCnt = 500; /* Sample Size */
tStat.tParm.lStopCnt = 11; /* Stop Count */

5.2 PERFORMING TAIL-FIT

The following code snippet shows how a tail-fit can be performed in a
Histogram Window. Note that it may take many passes for the tail-fit to
succeed. Therefore you may want to error if not successfully in a certain
number of passes. Set the lPass parameter to 0 to start a new tail-fit
analysis.

/* Allocate window structure, and initialize to defaults */
HIST tHist;
memset (&tHist, 0, sizeof (HIST));
WavDefHist (&tHist);

/* Enable tail-fit */
tHist.lTailFit = 1;

/* Loop until tail-fit is successful */
while (!tHist.tTfit.lGood)

{
if (WavGetHist (&tHist))

goto ErrorHandler;
}

5-2

5.3 DRAWING FROM A PLOT STRUCTURE

This code snippet shows how to draw from a plot structure. The example
is for Microsoft Visual C++, but can be modified for other platforms.

void DrawPlot (CDC *pCdc, // Pointer to device context.
CRect *wind, // Window to draw within

// in device coordinates.
PLOT *plot, // Source plot structure.
double xmin, // Plot extents to use when
double xmax, // drawing, this allows a
double ymin, // margin to be added around
double ymax)// plot or overlay of plots

{ // with differing extents.
long i;
double x, y;

// First plot X point as a percent of window extents
x = (plot->dXmin - xmin) / (xmax - xmin);

// First plot X point in device coordinates
x = (double) (wind->right - wind->left)

* x + (double) wind->left;

// First plot Y point as a percent of window extents
y = (plot->dData[0] - ymin) / (ymax - ymin);

// First plot Y point in device coordinates
y = (double) (wind->bottom - wind->top)

* (1.0 - y) + (double) wind->top;

// Move current location to the first plot point
pCdc->MoveTo ((int) x, (int) y);

for (i = 1; i < plot->lNumb; i++)
{
// Calculate what the next X point is
x = ((plot->dXmax - plot->dXmin) * (double) i

/ (double) (plot->lNumb - 1) + plot->dXmin);

// This plot X point as a percent of window extents
x = (x - xmin) / (xmax - xmin);

// This plot X point in device coordinates
x = (double) (wind->right - wind->left)

* x + (double) wind->left;

// This plot Y point as a percent of window extents
y = (plot->dData[i] - ymin) / (ymax - ymin);

// This plot Y point in device coordinates
y = (double) (wind->bottom - wind->top)

* (1.0 - y) + (double) wind->top;

// Draw line to this plot point
pCdc->LineTo ((int) x, (int) y);
}

}

5-3

5.4 PERFORMING A DATACOM MEASUREMENT

This code snippet shows how a dataCOM measurement can be taken.
Error checking is performed at each step, and several acquisition
parameters are overridden. A pulsefind is used to determine suitable
voltage levels, and results are printed.

/* Declare required include files */
#include <stdio.h>
#include <string.h>
#include "wavapi.h"

int main(void)
{
/* Local variables */
DCOM tDcom;
int RetCode;

/* Initialize DTS207x device */
RetCode = DtsInitDev("hpib,5", 0, 5);
if (RetCode)

{
fprintf(stderr,

"\nDtsInitDev failed, return code = %i\n", RetCode);
DtsExitDev();
return -1;
}

/* Initialize structure to defaults */
memset(&tDcom, 0, sizeof (DCOM));
WavDefDcom(&tDcom);

/* Override to use external arming */
tDcom.tParm.lAutoArm = ARM_EXTRN;
/* Select the pattern to use */
strcpy(tDcom.sPtnName, "2^7-1.ptn");
/* Do not measure the Bit Rate */
tDcom.lGetRate = 0;
/* Assign the Bit Rate to use */
tDcom.dBitRate = 1.0625e9;

/* Perform a pulsefind */
RetCode = WavPulsFnd(&tDcom.tParm, WIND_DCOM);
if (RetCode)

{
fprintf(stderr,

"\nWavPulsFnd failed, return code = %i\n", RetCode);
DtsExitDev();
return -1;
}

5-4

/* Acquire the measurement */
RetCode = WavGetDcom(&tDcom);
if (RetCode)

{
fprintf(stderr,

"\nWavGetDcom failed, return code = %i\n", RetCode);
DtsExitDev();
return -1;
}

/* Print the results in picoseconds */
fprintf(stderr,

"Deterministic Jitter: %.3lfps\n", tDcom.dDdjt * 1e12);
fprintf(stderr,

"Random Jitter: %.3lfps\n", tDcom.dRjit[0] * 1e12);
fprintf(stderr,

"Total Jitter: %.3lfps\n", tDcom.dTjit[0] * 1e12);

/* Release the memory */
WavClrDcom(&tDcom);

/* Release the device */
RetCode = DtsExitDev();
if (RetCode)

{
fprintf(stderr,

"\nDtsExitDev failed, return code = %i\n", RetCode);
return -1;
}

/* Indicate successful completion of the program */
return 0;
}

6-1

CHAPTER 6 – BUILD CONSIDERATIONS

6.1 SUPPORTED COMPILERS FOR THE WAVECREST
PRODUCTION API

The Wavecrest Production API was built and is supported using the
following compilers. Other compilers may be used and provide
satisfactory results, although performance is not guaranteed.

Win32 (Win95, Win98, and WinNT 4.0)
Microsoft Visual C++ 5.0 and above
Microsoft C/C++ Optimizing Compiler 11.00
Microsoft Visual Basic 6.0

HP-UX 9.05
HP C/ANSI C Developer's Bundle A.B9.05.3A

HP-UX 10.2
HP C/ANSI C Developer's Bundle B.10.20.03

Sun 4.1.x (Solaris 1)
SPARCompiler C 3.0.1

Sun 2.5.1 or above (Solaris 2)
SPARCompiler C 3.0.1

6.2 BUILD REQUIREMENTS

When building an application using the Wavecrest Production API the
following requirements need to be considered.

6.2.1 Win32 (Win95, Win98, and WinNT 4.0)

A static stub library and dynamic library link library (DLL) are supplied
for developing under Microsoft Windows. You can link to the static stub
library which relieves all the programming of the chores normally
associated with linking to a DLL. The DLL libraries must be available in
the current directory or somewhere in the PATH in order to execute the
application.

The define WIN32 must be supplied to enable options specific to
Microsoft Windows platforms. If you are developing within the Visual
C++ environment, this define is automatically supplied for you. If you are
using a command line compiler, this define may be supplied as follows:

cl -c -DWIN32 apitest.c

6-2

The define CPLUSPLUS must be supplied if you are developing a
Microsoft C++ application. This informs the compiler that the DLL was
created as a C library, and does not contain the additional information that
is normally contained in a C++ library. If you are developing a standard C
application, supplying this define will result in an error. If you are using a
command line compiler, this define may be supplied as follows:

cl -c -DWIN32 -DCPLUSPLUS apitest.c

In order to produce a DLL which is compatible for use with Visual Basic,
fully packed structures are used. As long as the supplied include files are
used in conjunction with the Microsoft compiler, this requirement is
fulfilled by a supplied #pragma statement which removes all structure
padding. If you are using another compiler, consult its documentation in
order to enable full structure packing.

When developing under Visual Basic the two files dtsapi.bas and
wavapi.bas are substituted for the normal C include files. These two files
should be added as modules in your project, and contain all function call
and structure declarations. The two DLL files need to be available in the
current directory or somewhere in the PATH in order to execute the
resulting application.

6.2.2 All UNIX Platforms

The define WIN32 must NOT be defined when compiling under UNIX
platforms. This define enables options which are not suitable under UNIX
platforms.

6.2.3 HP-UX 9.05 and HP-UX 10.20

The ANSI C compiler must be used. ANSI compatibility is enabled from
a command line by specifying the -Aa option as follows:

cc -c -Aa apitest.c

Required HPIB support is supplied by linking to the Standard Instrument
Control Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lsicl to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

cc -Aa apitest.o -ldts -lwav -lsicl -lm -o apitest

6-3

6.2.4 Sun 4.1.x (Solaris 1)

The ANSI C compiler must be used. ANSI compatibility is enabled from
a command line by using the acc command as follows:

acc -c apitest.c

Required GPIB support is supplied by linking to the National Instruments
GPIB Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lgpib to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

acc apitest.o -ldts -lwav -lgpib -o apitest

6.2.5 Sun 2.5.1 or above (Solaris 2)

The standard ANSI C compiler must be used. The command line would
appear as follows:

cc -c apitest.c

Required GPIB support is supplied by linking to the National Instruments
GPIB Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lgpib to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

cc apitest.o -ldts -lwav -lgpib -lm -o apitest

This page intentionally left blank.

A-1

APPENDIX A – ERROR CODES

Define Value Description
SUCCESS 0 Success
DTS_ERROR -1 Error communicating with DTS
MEM_ERROR -2 Required memory could not be

allocated
CMD_ERROR -3 Invalid parameters passed to function
VER_ERROR -4 Invalid DTS version or DLL version
FIT_ERROR -5 Failure applying tail-fit
LIM_ERROR -6 Results exceed specified limits
FIO_ERROR -7 File I/O error
ARM_ERROR -8 No suitable arm signal detected
TRG_ERROR -9 No suitable trigger signal detected
USR_ERROR -10 Operation was terminated by user
UNT_ERROR -11 Unit interval data exceeds limits
DDJ_ERROR -12 DCD+DDJ data exceeds limits
VAR_ERROR -13 Variance data for RJ+PJ exceeds

limits
LRN_ERROR -14 Learn Mode data exceeds limits
INT_ERROR -15 Insufficient points for interpolation

A-2

B-1

APPENDIX B – VBASIC EXAMPLE

The following shows what the sample program in Chapter 1 might look
like written as a Visual Basic subroutine:

Private Sub Sample_Click()
' Step #1 Allocate Required Structures
Dim tStat As STAT

' Step #2 Initialize the DTS207x
If (DtsInitDev("dev5", 0, 5) <> 0) Then

mainDisplay.Text = "DtsInitDev failed..."
GoTo ExitPoint:

End If

' Step #3 Initialize STAT Window Structure
' memset() is not necessary, in VBasic
' objects are automatically cleared
WavDefStat tStat

' Step #4 Perform Data Acquisition
If (WavGetStat(tStat) <> 0) Then

mainDisplay.Text = "WavGetStat failed..."
GoTo ExitPoint:

End If

' Step #5 Print Results
mainDisplay.Text = "-Wavecrest Production API-" & _

vbCrLf & "- Sample Application -" & vbCrLf & _
vbCrLf & " Average: " & _
Format(tStat.dMean * 1000000000#, "0.000") & "ns" & _
vbCrLf & " 1-Sigma: " & _
Format(tStat.dSdev * 1000000000000#, "0.000") & "ps" & _
vbCrLf & " Minimum: " & _
Format(tStat.dMini * 1000000000#, "0.000") & "ns" & _
vbCrLf & " Maximum: " & _
Format(tStat.dMaxi * 1000000000#, "0.000") & "ns"

' Step #6 Cleanup and Return
WavClrStat tStat

ExitPoint:
DtsExitDev
End Sub

WAVECREST Corporation
World Headquarters: West Coast Office: Europe Office:
7626 Golden Triangle Drive 1735 Technology Drive, Suite 400 Lilenthalalle 25
Eden Prairie, MN 55344 San Jose, CA 95110 D-80939 Munchen
(952) 831-0030 (408) 436-9000 011-49-89-32225330
FAX: (952) 831-4474 FAX: (408) 436-9001 FAX: 011-49-89-32225333
Toll Free: 1-800-733-7128 1-800-821-2272
www.wavecrest.com

200002-03 REV A

